首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of chiral 12-phenyi(2H)dodecanoic acids as metabolic probes for the evaluation of the stereo-chemical course of the biosynthesis of 1-alkerses from fatty acids in plants and insects is described. The diastereoisomeric (2R, 3R)- or (2S, 3S)-12-phenyl(2,3?2H2)dodecanoic acids 11 are obtained in high chemical and optical yield (>97% e.e.) from the readily available (E)-12-phenyl(2,3-2H2)dodec-2-enoic acid ( 10 ) or (E)-12-phenyldodec-2-enoic acid ( 10a ) by microbial reduction with wet packed cells of Clostridium tyrobutyricum in either 2H2O or H2O buffer. (2R)- and (2S)-12-phenyl(2?2H)dodecanoic acids 9 (>97% e.e.) are accessible from the allylic alcohol 6 via Sharpless epoxidation with (+)-L- or (?)-D-diethyl tartrate, Synthetic routes to the (E)- and (Z)-11-phenyl(1?2H) undec-1-enes 16 and 16a as reference compounds are also included.  相似文献   

2.
Six Schiff-bases HL1-HL4, L5 and L6 [HL1 = 2,6-bis[1-(2-aminoethyl)pyrolidine-iminomethyl]-4-methyl-phenol, HL2 = 2,6-bis[1-(2-aminoethyl)piperidine-iminomethyl]-4-methyl-phenol, HL3 = N-{1-(2-aminoethyl)pyrolidine}salicylideneimine, HL4 = N-{1-(2-aminoethyl)piperidine}salicylideneimine, L5 = 2-benzoyl pyridine-N-{1-(2-aminoethyl)pyrolidine}, L6 = 2-benzoylpyridine-N-{1-(2-aminoethyl)piperidine}] have been synthesized and characterized. Zn(II) complexes of those ligands have been prepared by conventional sequential route as well as by template synthesis. The same complexes are obtained from the two routes as evident from routine physicochemical characterizations. All the Schiff-bases exhibit photoluminescence originating from intraligand (π–π*) transitions. Metal mediated fluorescence enhancement is observed on complexation of HL1-HL4 with Zn(II), whereas metal mediated fluorescence quenching occurs in Zn(II) complexes of L5 and L6.  相似文献   

3.
Radiative lifetimes have been determined for the 62 P 1 2/0 and 62 P 3 2/0 levels in Yb II using the method of laser-induced fluorescence from sputtered metal vapour. The results, 8.0(2)ns (62 P 1 2/0 ) and 6.3(3)ns (62 P 3 2/0 ), are compared with lifetimes obtained from ab initio manybody perturbation calculations.  相似文献   

4.
Mononuclear and Multiply Bridged Dinuclear Phthalocyaninates(1–/2–) of Yttrium by Solvent Controlled Condensation; Small Solvent Clusters as Ligands Green chlorophthalocyaninato(2–)yttrium(III), [Y(Cl)pc2–] forms when yttrium chloride is heated with o‐phthalonitrile in 1‐chloronaphthalene. Black cis‐di(chloro)phthalocyaninato(1‐)yttrium(III), cis[Y(Cl)2pc] is obtained as a stable intermediate by partial reduction. Both complexes are soluble in many O‐donor solvents and pyridine. The solubility in water is remarkable: [Y(Cl)pc2–] dissolves with green, cis[Y(Cl)2pc] with red‐violet color. Typical absorptions of the pc2– ligand are observed at 14800 and 29700 cm–1. A solvent dependent monomer‐dimer equilibrium is found for the pc radical. The monomer with absorptions at 12100 and 19900 cm–1 is favored in non‐polar solvents, while in polar solvents the dimer with absorptions at 8700, 13200 and 18600 cm–1 is preferred. cis‐Tri(dimethylformamide)chlorophthalocyaninato(2–)yttrium(III) etherate ( 1 ) crystallises from a solution of [Y(Cl)pc2–] in MeOH/dmf, cis‐tetra(dimethylsulfoxide)phthalocyaninato(2–)yttrium(III) chloride etherate methanol disolvate ( 2 ) from thf/dmso, μ‐di(chloro)‐μ‐di〈di(pyridine)(μ‐water)〉di(phthalocyaninato(2–)‐ yttrium(III)) ( 5 ) from py, and cis‐(chloro)pyridine(triphenylphosphine oxide)phthalocyaninato(2–)yttrium(III) semi‐etherate ( 3 ) is obtained from a solution of [Y(Cl)pc2–] and triphenylphosphine oxide in py. 1 condenses in MeOH yielding a (1 : 1)‐mixture ( 4 ) of μ‐di(chloro)di(〈trans‐(diwaterdimethanol)〉〈dimethanol〉phthalocyaninato(2–)yttrium(III)) ( 4 a ) and μ‐di(chloro)di(dimethylformamide〈dimethanol〉phthalocyaninato(2–)yttrium(III)) ( 4 b ); co‐ordinatively bound solvent clusters are in brakets. The structures of 1 – 5 have been established by X‐ray crystallography. Apart from 3 with hepta‐co‐ordinated yttrium, the metal ion prefers octa‐co‐ordination, and the bond arrangement around Y3+ is always a distorted quadratic antiprism. In the dinuclear complexes obtained by solvent controlled condensation both antiprisms share an edge by two μ‐Cl atoms in 4 , while in 5 the antiprisms are face‐shared by two trans positioned μ‐Cl atoms and μ‐O atoms, respectively. In 5 , the bent b〈{py}2(μ‐H2O)〉 cluster is stabilised by a combined interplanar bonding of pyridine by short N…H–O bonds (d(N…O) = 2.664(7) Å; 2.81(2) Å) and strong van‐der‐Waals interactions with the ecliptic pc2– ligands. 4 a and 4 b contain the dimeric methanol cluster 〈(MeOH)2〉, and 4 a in addition the cyclic heterotetrameric trans‐diwaterdimethanol cluster, transc〈(H2O)2(MeOH)2〉. The neutral clusters co‐ordinatively bound to the Y atom are compared with structurally established cluster‐anions of type 〈(OMe)(MeOH)〉, linear l〈(OMe)(MeOH)2, cyclic c〈(OH)3(H2O)33–, b〈{H2O}2(μ‐O)〉2–, and b{H2O}2(μ‐F)〉.  相似文献   

5.
The cationic cluster complexes [Ru3(μ‐H)(μ‐κ2N,C‐L1 Me)(CO)10]+ ( 1 +; HL1 Me=N‐methylpyrazinium), [Ru3(μ‐H)(μ‐κ2N,C‐L2 Me)(CO)10]+ ( 2 +; HL2 Me=N‐methylquinoxalinium), and [Ru3(μ‐H)(μ‐κ2N,C‐L3 Me)(CO)10]+ ( 3 +; HL3 Me=N‐methyl‐1,5‐naphthyridinium), which contain cationic N‐heterocyclic ligands, undergo one‐electron reduction processes to become short lived, ligand‐centered, trinuclear, radical species ( 1 – 3 ) that end in the formation of an intermolecular C? C bond between the ligands of two such radicals, thus leading to neutral hexanuclear derivatives. These dimerization processes are selective, in the sense that they only occur through the exo face of the bridging ligands of trinuclear enantiomers of the same configuration, as they only afford hexanuclear dimers with rac structures (C2 symmetry). The following are the dimeric products that have been isolated by using cobaltocene as reducing agent: [Ru6(μ‐H)26‐κ4N2,C2‐(L1 Me)2}(CO)18] ( 5 ; from 1 +), [Ru6(μ‐H)26‐κ4N2,C2‐(L2 Me)2}(CO)18] ( 6 ; from 2 +), and [Ru6(μ‐H)24‐κ8N2,C6‐(L3 Me)2}(CO)18] ( 7 ; from 3 +). The structures of the final hexanuclear products depend on the N‐heterocyclic ligand attached to the starting materials. Thus, although both trinuclear subunits of 5 and 6 are face‐capped by their bridging ligands, the coordination mode of the ligand of 5 is different from that of the ligand of 6 . The trinuclear subunits of 7 are edge‐bridged by its bridging ligand. In the presence of moisture, the reduction of 3 + with cobaltocene also affords a trinuclear derivative, [Ru3(μ‐H)(μ‐κ2N,C‐L3′ Me)(CO)10] ( 8 ), whose bridging ligand (L3′ Me) results from the formal substitution of an oxygen atom for the hydrogen atom (as a proton) that in 3 + is attached to the C6 carbon atom of its heterocyclic ligand. The results have been rationalized with the help of electrochemical measurements and DFT calculations, which have also shed light on the nature of the odd‐electron species, 1 – 3 , and on the regioselectivity of their dimerization processes. It seems that the sort of coupling reactions described herein requires cationic complexes with ligand‐based LUMOs.  相似文献   

6.
Mononitrosyl and trans ‐Dinitrosyl Complexes of Phthalocyaninates of Manganese and Rhenium Tetra(n‐butyl)ammonium or di(triphenylphosphane)iminium nitrosylacidophthalocyaninato(2–)manganate, (cat)[Mn(NO)(X)pc2–] (X = ONO, NCO, N3; cat = nBu4N, PNP) is prepared from acidophthalocyaninato(2–)manganese, [Mn(X)pc2–], (cat)NO2 and (nBu4N)BH4 in CH2Cl2 or from nitrosylphthalocyaninato(2–)manganese, [Mn(NO)pc2–] and (nBu4N)X (X = ONO, NCO, N3, NCS) at T < 120 °C, respectively. [Mn(NO)(X)pc2–] dissociates in methanol, and [Mn(NO)pc2–] precipitates. Nitrito(O)phthalocyaninato(2–)manganese, (cat)NO2 and hydrogensulfide yield trans‐di(nitrosyl)phthalocyaninato(2–)manganate, trans[Mn(NO)2pc2–], isolated as red violet (PNP) and (nBu4N) complex salt. Nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)manganese, [Mn(NO)(OPPh3)pc2–] is obtained by addition of OPPh3 to [Mn(NO)pc2–] at 200 °C. Di(triphenylphosphane)phthalocyaninato(2–)rhenium(II) and (PNP)NO2 in CH2Cl2 or in molten (PNP)NO2 and PPh3 at 100 °C yields green blue l‐di(triphenylphosphane)iminium nitrosylnitrito(O)phthalocyaninato(2–)rhenate, l(PNP)[Re(NO)(ONO)pc2–]. Similarly, but with (nBu4N)NO2 red plates of tetra‐(n‐butyl)ammonium trans‐di(nitrosyl)phthalocyaninato(2–)rhenate, (nBu4N)trans[Re(NO)2pc2–] is isolated. Addition of (PNP)Br or (PNP)PF6 to a concentrated solution of (nBu4N)trans[Re(NO)2pc2–] in pyridine precipitates l(PNP)trans[Re(NO)2pc2–]. (nBu4N)trans[Re(NO)2pc2–] and PPh3 at 300 °C yield blue green nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)‐ rhenium, [Re(NO)(OPPh3)pc2–], that is oxidised with iodine precipitating nitrosyl(triphenylphosphane oxide)phthalocyaninato(2–)rhenium triiodide, [Re(NO)(OPPh3)pc2–]I3. The crystal structures of l(PNP)[Mn(NO)(ONO)pc2–] ( 1 ), l(PNP)‐ [Mn(NO)(NCO)pc2–] ( 2 ), l(PNP)trans[Mn(NO)2pc2–] ( 3 ), l(PNP)trans[Re(NO)2pc2–] ( 4 ) [Mn(NO)(OPPh3)pc2–] ( 5 ), [Re(NO)(OPPh3)pc2–] ( 6 ), and [Re(NO)(OPPh3)pc2–]I3 · CH2Cl2 ( 7 ) have been determined. The M–N(NO) distance varies between 1.623(12) Å in 5 and 1.846(3) Å in 3 . The M–N–O moiety is almost linear. The UV‐Vis spectra with the B band at ca. 14500 cm–1and the Q band at 30400 cm–1 do not dependent significantly on the axial ligand and the metal atom and its oxidation state. N–O stretching vibrations are observed in the IR spectra between 1701 cm–1 in 3 and 1753 cm–1 in [Mn(NO)pc2–] or for the Re series between 1571 cm–1 in 4 and 1724 cm–1 in 7 . M–N(NO) stretching and M–N–O deformation vibrations are assigned in the IR spectra and resonance Raman spectra between 486 cm–1 in 4 and 620 cm–1 in 1 .  相似文献   

7.
The collision-induced dissociation (CID) spectra of five alkylmethyleneimmonium ions (H2C-N+R1R2, (a) R1 = R2 = C2H5, (b) R1 = n-C3H7, R2 = H, (c) R1 = n-C3H7, R2 = CH3, (d) R1 = n-C3H7, R2 = C2H5, (e) R1 = R2 = n-C3H7) are reported and discussed in terms of the mechanism of alkane loss. The most abundant alkane losses result from 2-azaallylic bond cleavages within R1 and R2 leading to daughter ions of m/z 84. Ion d (R1 = n-C3H7, R2 = C2H5) was chosen for a deuterium-labelling study because it exhibited methane loss nearly free from interferences with other fragmentations. The methane lost consists to a great extent (95%) of the methyl moiety of R2. Whereas the methyl moiety obviously stays intact during the fragmentation process, the hydrogen additionally needed originates from all positions of R1 and the double-bonded methylene in an approximately random distribution, suggesting extensive hydrogen migrations preceding the transfer step.  相似文献   

8.
Rate coefficients and/or mechanistic information are provided for the reaction of Cl‐atoms with a number of unsaturated species, including isoprene, methacrolein ( MACR ), methyl vinyl ketone ( MVK ), 1,3‐butadiene, trans‐2‐butene, and 1‐butene. The following Cl‐atom rate coefficients were obtained at 298 K near 1 atm total pressure: k(isoprene) = (4.3 ± 0.6) × 10?10cm3 molecule?1 s?1 (independent of pressure from 6.2 to 760 Torr); k( MVK ) = (2.2 ± 0.3) × 10?10 cm3 molecule?1 s?1; k( MACR ) = (2.4 ± 0.3) × 10?10 cm3 molecule?1 s?1; k(trans‐2‐butene) = (4.0 ± 0.5) × 10?10 cm3 molecule?1 s?1; k(1‐butene) = (3.0 ± 0.4) × 10?10 cm3 molecule?1 s?1. Products observed in the Cl‐atom‐initiated oxidation of the unsaturated species at 298 K in 1 atm air are as follows (with % molar yields in parentheses): CH2O (9.5 ± 1.0%), HCOCl (5.1 ± 0.7%), and 1‐chloro‐3‐methyl‐3‐buten‐2‐one (CMBO, not quantified) from isoprene; chloroacetaldehyde (75 ± 8%), CO2 (58 ± 5%), CH2O (47 ± 7%), CH3OH (8%), HCOCl (7 ± 1%), and peracetic acid (6%) from MVK ; CO (52 ± 4%), chloroacetone (42 ± 5%), CO2 (23 ± 2%), CH2O (18 ± 2%), and HCOCl (5%) from MACR ; CH2O (7 ± 1%), HCOCl (3%), acrolein (≈3%), and 4‐chlorocrotonaldehyde (CCA, not quantified) from 1,3‐butadiene; CH3CHO (22 ± 3%), CO2 (13 ± 2%), 3‐chloro‐2‐butanone (13 ± 4%), CH2O (7.6 ± 1.1%), and CH3OH (1.8 ± 0.6%) from trans‐2‐butene; and chloroacetaldehyde (20 ± 3%), CH2O (7 ± 1%), CO2 (4 ± 1%), and HCOCl (4 ± 1%) from 1‐butene. Product yields from both trans‐2‐butene and 1‐butene were found to be O2‐dependent. In the case of trans‐2‐butene, the observed O2‐dependence is the result of a competition between unimolecular decomposition of the CH3CH(Cl)? CH(O?)? CH3 radical and its reaction with O2, with kdecomp/kO2 = (1.6 ± 0.4) × 1019 molecule cm?3. The activation energy for decomposition is estimated at 11.5 ± 1.5 kcal mol?1. The variation of the product yields with O2 in the case of 1‐butene results from similar competitive reaction pathways for the two β‐chlorobutoxy radicals involved in the oxidation, ClCH2CH(O?)CH2CH3 and ?OCH2CHClCH2CH3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 334–353, 2003  相似文献   

9.
A series of amphiphilic graft copolymers of poly (vinylidene fluoride‐co‐chlorotrifluoroethylene)‐g‐poly(2‐vinyl pyridine), P (VDF‐co‐CTFE)‐g‐P2VP, with different degrees of P2VP grafting (from 26.3 to 45.6 wt%) was synthesized via one‐pot atom transfer radical polymerization (ATRP). The amphiphilic properties of P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers allowed itself to self‐assemble into nanoscale structures. P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers were introduced into neat P (VDF‐co‐CTFE) as additives to form blending membranes. When two different solvents, N‐methyl‐2‐pyrrolidone (NMP) and dimethylformamide (DMF), were used, specific organized crystalline structures were observed only in the NMP systems. P (VDF‐co‐CTFE)‐g‐P2VP played a pivotal role in controlling the morphology and pore structure of membranes. The water flux of the membranes increased from 57.2 to 310.1 L m?2 h?1 bar?1 with an increase in the PVDF‐co‐CTFE‐g‐P2VP loading (from 0 to 30 wt%) due to increased porosity and hydrophilicity. The flux recovery ratio (FRR) increased from 67.03% to 87.18%, and the irreversible fouling (Rir) decreased from 32.97% to 12.82%. Moreover, the pure gas permeance of the membranes with respect to N2 was as high as 6.2 × 104 GPU (1 GPU = 10–6 cm3[STP]/[s cm2 cmHg]), indicating their possible use as a porous polymer support for gas separation applications.  相似文献   

10.
The reactions D + H2 (v = 0, 1) → HD (v = 0, 1) + H have been studiedin a discharge flow reactor by CARS-spectroscopy. For H2(v = 0) molecules a rate constant of (4, 0 ± 1, 0) 10?16 cm3 s?1 is obtained at 310 K from measured HD (v = 0, 1) product yields. Keeping the degree of vibrational excitation of H2in the microwave discharge in the range of 1% from the increase of the HD (v = 0, 1) CARS signals a rate of k2a, b = (1, 0 ± 0, 4) 10?13cm3 s?1 is derived. The total consumption of H2 (v = 1) in the presence of D atoms gives a rate k2 = (1, 9 ± 0, 2) 10?13 cm3 s?1 at 310 K. The resultsare discussed in regard to previous measurements and theoretical treatments.  相似文献   

11.
《Electroanalysis》2005,17(23):2129-2136
The investigation of the dissolved iron(III)–nitrilotriacetate–hydroxide system in the water solution (I=0.1 mol L?1 in NaClO4; pH 8.0±0.1) using differential pulse cathodic voltammetry, cyclic voltammetry, and sampled direct current (DC) polarography, was carried out on a static mercury drop electrode (SMDE). The dissolved iron(III) ion concentrations varied from 2.68×10?6 to 6×10?4 mol L?1 and nitrilotriacetate concentrations were 1×10?4 and 5×10?4 mol L?1. By deconvoluting of the overlapped reduction voltammetric peaks using Fourier transformation, four relatively stable, dissolved iron(III) complex species were characterized, as follows: [Fe(NTA)2]3?, mixed ligand complexes [FeOHNTA]? and [Fe(OH)2NTA]2?, showing a one‐electron quasireversible reduction, and binuclear diiron(III) complex [NTAFeOFeNTA]2?, detected above 4×10?4 mol L?1 of the added iron(III) ions, showing a one‐electron irreversible reduction character. The calculations with the constants from the literature were done and compared with the potential shifts of the voltammetric peaks. Fitting was obtained by changing the following literature constants: log β2([Fe(NTA)2]3?) from 24 to 27.2, log β1([FeNTA]?) from 8.9 to 9.2, log β2([Fe(NTA)2]4?) from 11.89 to 15.7 and log β2([Fe(OH)2NTA]3?) from 15.63 to 19. The determination of the electrochemical parameters of the mixed ligand complex [FeOHNTA]?, such as: transfer coefficient (α), rate constant (ks) and formal potential (E°') was done using a sampled DC polarography, and found to be 0.46±0.05, 1.0±0.3×10?3 cm s?1, and ?0.154±0.010 V, respectively. Although known previously in the literature, these four species have now for the first time been recorded simultaneously, i.e. proved to exist simultaneously under the given conditions.  相似文献   

12.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

13.
The synthesis and molecular structure of trans‐{bis[(acetato‐κO)‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 4 ) and cis‐{bis[chlorido‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 5 ) is reported. Both neutral chelate complexes are prepared from the corresponding CoII salt [CoX2; X = OAc ( 1 ), Cl ( 2 )] and 2‐(1‐aziridinyl)ethanol (azolH, 3 ) in dry dichloromethane. A third, ionic complex, cis‐{bis[aqua‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) diacetate ( 6 ) is formed from 4 in the presence of water and could be crystallized from aqueous dichloromethane. In all cases, 2‐(1‐aziridinyl)ethanol is coordinating as bidentate chelate ligand by the nitrogen and oxygen atom of the aziridinyl and hydroxy moiety. After purification, the compounds have been fully characterized using IR spectroscopy and FAB+‐MS. The single‐crystal X‐ray structure analysis revealed a distorted octahedral geometry for all complexes with either trans ( 4 ) or cis ( 5 , 6 ) configuration.  相似文献   

14.

The cobalt(III) complexes [CoX2(tmd)2]+ (X: Cl? or NCS?, tmd: tetramethylenediamine), in which tmd forms a seven-membered chelate ring, have been prepared. Trans-[CoCl2(tmd)2]Cl was derived from [Co(NO2)2(tmd)2]NO3 in a fairly good yield. Two geometrical isomers, trans and cis, of [Co(NCS)2-(tmd)2]NO3 were independently synthesized from trans-[CoCl2(tmd)2]Cl by different methods. The geometrical configurations of the isomeric pair of the NCS complex have been determined based on chromatographic behavior, electronic absorption spectra, and vibrational spectra. The d-d and CT absorption maxima of the NCS complex (18.7 x 103cm?1 (ε = 275) and 30.9 x 103cm?1 (ε = 3630) for the trans isomer, 19.3 x 103cm?1 (ε = 302) and 31.0 x 103cm?1 (ε = 4070) for the cis isomer) and the Co-N(amine) stretching frequency of trans-[CoCl2(tmd)2]Cl (418 cm?1) have been compared with those of the corresponding ethylenediamine and trimethylenediamine complexes.  相似文献   

15.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

16.
Biotransformation of (±)‐threo‐7,8‐dihydroxy(7,8‐2H2)tetradecanoic acids (threo‐(7,8‐2H2)‐ 3 ) in Saccharomyces cerevisiae afforded 5,6‐dihydroxy(5,6‐2H2)dodecanoic acids (threo‐(5,6‐2H2)‐ 4 ), which were converted to (5S,6S)‐6‐hydroxy(5,6‐2H2)dodecano‐5‐lactone ((5S,6S)‐(5,6‐2H2)‐ 7 ) with 80% e.e. and (5S,6S)‐5‐hydroxy(5,6‐2H2)dodecano‐6‐lactone ((5S,6S)‐5,6‐2H2)‐ 8 ). Further β‐oxidation of threo‐(5,6‐2H2)‐ 4 yielded 3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ), which were converted to (3R,4R)‐3‐hydroxy(3,4‐2H2)decano‐4‐lactone ((3R,4R)‐ 9 ) with 44% e.e. and converted to 2H‐labeled decano‐4‐lactones ((4R)‐(3‐2H1)‐ and (4R)‐(2,3‐2H2)‐ 6 ) with 96% e.e. These results were confirmed by experiments in which (±)‐threo‐3,4‐dihydroxy(3,4‐2H2)decanoic acids (threo‐(3,4‐2H2)‐ 5 ) were incubated with yeast. From incubations of methyl (5S,6S)‐ and (5R,6R)‐5,6‐dihydroxy(5,6‐2H2)dodecanoates ((5S,6S)‐ and (5R,6R)‐(5,6‐2H2)‐ 4a ), the (5S,6S)‐enantiomer was identified as the precursor of (4R)‐(3‐2H1)‐ and (2,3‐2H2)‐ 6 ). Therefore, (4R)‐ 6 is synthesized from (3S,4S)‐ 5 by an oxidation/keto acid reduction pathway involving hydrogen transfer from C(4) to C(2). In an analogous experiment, methyl (9S,10S)‐9,10‐dihydroxyoctadecanoate ((9S,10S)‐ 10a ) was metabolized to (3S,4S)‐3,4‐dihydroxydodecanoic acid ((3S,4S)‐ 15 ) and converted to (4R)‐dodecano‐4‐lactone ((4R)‐ 18 ).  相似文献   

17.
Three novel coordination polymers (CPs), namely poly[[di‐μ‐aqua‐bis{μ4‐3,3′‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ5O1:O1′,O3:O5:O5′}bis(1,10‐phenanthroline‐κ2N,N′)trinickel(II)] dimethylformamide 1.5‐solvate trihydrate], {[Ni3(C21H11O8)2(C12H8N2)2(H2O)2]·1.5C3H7NO·3H2O}n, (I), poly[[di‐μ‐aqua‐bis{μ4‐3,3′‐[(5‐carboxylato‐1,3‐phenylene)bis(oxy)]dibenzoato‐κ5O1:O1′,O3:O5:O5′}bis(1,10‐phenanthroline‐κ2N,N′)tricobalt(II)] diethylamine disolvate tetrahydrate], {[Co3(C21H11O8)2(C12H8N2)2(H2O)2]·2C2H7N·4H2O}n, (II), and catena‐poly[[aqua(1,10‐phenanthroline‐κ2N,N′)zinc(II)]‐μ‐5‐(3‐carboxyphenoxy)‐3,3′‐oxydibenzoato‐κ2O1:O3], [Zn(C21H12O8)(C12H8N2)(H2O)]n, (III), have been synthesized by the reaction of different metal ions (Ni2+, Co2+ and Zn2+), 3,3′‐[(5‐carboxy‐1,3‐phenylbis(oxy)]dibenzoic acid (H3cpboda) and 1,10‐phenanthroline (phen) under solvothermal conditions. All the CPs were characterized by elemental analysis, single‐crystal and powder X‐ray diffraction, FT–IR spectroscopy and thermogravimetric analysis. Complexes (I) and (II) have isomorphous structures, featuring similar linear trinuclear structural units, in which the central NiII/CoII atom is located on an inversion centre with a slightly distorted octahedral [NiO6]/[CoO6] geometry. This comprises four carboxylate O‐atom donors from two cpboda3? ligands and two O‐atom donors from bridging water molecules. The terminal NiII/CoII groups are each connected to the central NiII/CoII cation through two μ1,3‐carboxylate groups from two cpboda3? ligands and one water bridge, giving rise to linear trinuclear [M32‐H2O)2(RCOO)4] (M = Ni2+/Co2+) secondary building units (SBUs) and the SBUs develop two‐dimensional‐networks parallel to the (100) plane via cpboda3? ligands with new (32·4)2(32·83·9)2(34·42.82·94·103) topological structures. Zinc complex (III) displays one‐dimensional coordination chains and the five‐coordinated Zn atom forms a distorted square‐pyramidal [ZnO3N2] geometry, which is completed by two carboxylate O‐atom donors from two distinct Hcpboda2? ligands, one O atom from H2O and two N atoms from a chelating phen ligand. Magnetically, CP (I) shows weak ferromagnetic interactions involving the carboxylate groups, and bridging water molecules between the nickel(II) ions, and CP (II) shows antiferromagnetic interactions between the Co2+ ions. The solid‐state luminescence properties of CP (III) were examined at ambient temperature and the luminescence sensing of Cr2O72?/CrO42? anions in aqueous solution for (III) has also been investigated.  相似文献   

18.
Poly(hydroxyethylmethacrylate)‐based hydrogel membranes were applied to microfabricated, microdisk electrode arrays (MDEAs) of 50 μm (5184 disks), 100 μm (1296 disks) and 250 μm (207 disks) (d/r=4; A= 0.1 cm2) and studied by cyclic voltammetry (CV) in 1.0 mM ferrocene monocarboxylic acid (FcCO2H). The membrane produced an order of magnitude decrease in current densities and a shift to quasi reversibility due to a decrease in the Dappt of FcCO2H, from 4.51×10?6 cm2 s?1 to 1.42×10?8 cm2 s?1, (2.18×10?8 cm2 s?1 from release experiments). The MDEA050 (comprising 50 μm disks) maintained its enhanced current density attributes confirming its value as an effective electrode for biosensors. Finite element modeling (FEM) simulations successfully replicated the voltammograms of the MDEAs.  相似文献   

19.
The title compound, [Cd3(C8H10O4)3(C12H9N3)2(H2O)2]n or [Cd3(chdc)3(4‐PyBIm)2(H2O)2]n, was synthesized hydrothermally from the reaction of Cd(CH3COO)2·2H2O with 2‐(pyridin‐4‐yl)‐1H‐benzimidazole (4‐PyBIm) and cyclohexane‐1,4‐dicarboxylic acid (1,4‐chdcH2). The asymmetric unit consists of one and a half CdII cations, one 4‐PyBIm ligand, one and a half 1,4‐chdc2− ligands and one coordinated water molecule. The central CdII cation, located on an inversion centre, is coordinated by six carboxylate O atoms from six 1,4‐chdc2− ligands to complete an elongated octahedral coordination geometry. The two terminal rotationally symmetric CdII cations each exhibits a distorted pentagonal–bipyramidal geometry, coordinated by one N atom from 4‐PyBIm, five O atoms from three 1,4‐chdc2− ligands and one O atom from an aqua ligand. The 1,4‐chdc2− ligands possess two conformations, i.e.e,etrans‐chdc2− and e,acis‐chdc2−. The cis‐1,4‐chdc2− ligands bridge the CdII cations to form a trinuclear {Cd3}‐based chain along the b axis, while the trans‐1,4‐chdc2− ligands further link adjacent one‐dimensional chains to construct an interesting two‐dimensional network.  相似文献   

20.
Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)‐iPr‐Pybox (2,6‐bis[4‐isopropyl‐2‐oxazolin‐2‐yl]pyridine) and (SRSR/RSRS)‐Ind‐Pybox (2,6‐bis[8H‐indeno[1,2‐d]oxazolin‐2‐yl]pyridine), have been combined with lanthanide ions (Gd3+, Nd3+) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN?‐bridged coordination chains: {[LnIII(SS/RRiPr‐Pybox)(dmf)4]3[WV(CN)8]3}n ? dmf ? 4 H2O (Ln=Gd, 1 ‐SS and 1 ‐RR; Ln=Nd, 2 ‐SS and 2 ‐RR) and {[LnIII(SRSR/RSRS‐Ind‐Pybox)(dmf)4][WV(CN)8]}n ? 5 MeCN ? 4 MeOH (Ln=Gd, 3 ‐SRSR and 3 ‐RSRS; Ln=Nd, 4 ‐SRSR and 4 ‐RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200–450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the GdIII‐WV chains show dominant ligand‐based red phosphorescence, with λmax≈660 nm for 1 ‐(SS/RR) and 680 nm for 3 ‐(SRSR/RSRS). The NdIII‐WV chains, 2 ‐(SS/RR) and 4 ‐(SRSR/RSRS), exhibit near‐infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra‐f 4F3/24I9/2,11/2,13/2 transitions of the NdIII centers. This emission is realized through efficient ligand‐to‐metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [WV(CN)8]3? moieties connected by cyanide bridges, 1 ‐(SS/RR) and 3 ‐(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between GdIII (SGd=7/2) and WV (SW=1/2) centers with J 1 ‐(SS)=?0.96(1) cm?1, J 1 ‐(RR)=?0.95(1) cm?1, J 3 ‐(SRSR)=?0.91(1) cm?1, and J 3 ‐(RSRS)=?0.94(1) cm?1. 2 ‐(SS/RR) and 4 ‐(SRSR/RSRS) display ferromagnetic coupling within their NdIII‐NC‐WV linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号