首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A new chromium(III) complex, bearing a bis-thioether-diphenolate [OSSO]-type ligand, was found to be an efficient catalyst in the copolymerization of CO2 and epoxides to achieve poly(propylene carbonate), poly(cyclohexene carbonate), poly(hexene carbonate) and poly(styrene carbonate), as well as poly(propylene carbonate)(cyclohexene carbonate) and poly(propylene carbonate)(hexene carbonate) terpolymers.  相似文献   

2.
The radiolytic reactions of neptunium ions in aqueous carbonate, alkaline carbonate, and bicarbonate solutions were examined. It was found that Np(VI) is not oxidized to Np(VII) in carbonate and bicarbonate solutions saturated with nitrous oxide, whereas this oxidation process takes place in alkaline carbonate solutions, in which Np(VI) occurs as a hydroxo complex. It was also found that Np(V) is a radiation-stable neptunium species in carbonate solutions, whereas Np(VI) is stable in bicarbonate solutions.  相似文献   

3.
The calcium carbonate phases calcite, aragonite, vaterite, monohydrocalcite (calcium carbonate monohydrate), and ikaite (calcium carbonate hexahydrate) were studied by solid-state NMR spectroscopy ( (1)H and (13)C). Further model compounds were sodium hydrogencarbonate, potassium hydrogencarbonate, and calcium hydroxide. With the help of these data, the structure of synthetically prepared additive-free amorphous calcium carbonate (ACC) was analyzed. ACC contains molecular water (as H 2O), a small amount of mobile hydroxide, and no hydrogencarbonate. This supports the concept of ACC as a transient precursor in the formation of calcium carbonate biominerals.  相似文献   

4.
Crystal growth of calcium carbonate in biological simulation was investigated via egg white protein with different volume fractions,during which calcium carbonate was synthesized by calcium chloride an...  相似文献   

5.
The catalysis of the reaction of carbon dioxide with epoxides (cyclohexene oxide or propylene oxide) using the (salen)Cr(III)Cl complex as catalyst, where H(2)salen = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexenediimine (1), to provide copolymer and cyclic carbonate has been investigated by in situ infrared spectroscopy. As previously demonstrated for the cyclohexene oxide/CO(2) reaction in the presence of complex 1, coupling of propylene oxide and carbon dioxide was found to occur by way of a pathway first-order in catalyst concentration. Unlike the cyclohexene oxide/carbon dioxide reaction catalyzed by complex 1, which affords completely alternating copolymer and only small quantities of trans-cyclic cyclohexyl carbonate, under similar conditions propylene oxide/carbon dioxide produces mostly cyclic propylene carbonate. Comparative kinetic measurements were performed as a function of reaction temperature to assess the activation barrier for production of cyclic carbonates and polycarbonates for the two different classes of epoxides, i.e., alicyclic (cyclohexene oxide) and aliphatic (propylene oxide). As anticipated in both instances the unimolecular pathway for cyclic carbonate formation has a larger energy of activation than the bimolecular enchainment pathway. That is, the energies of activation determined for cyclic propylene carbonate and poly(propylene carbonate) formation were 100.5 and 67.6 kJ.mol(-1), respectively, compared to the corresponding values for cyclic cyclohexyl carbonate and poly(cyclohexylene carbonate) production of 133 and 46.9 kJ.mol(-1). The small energy difference in the two concurrent reactions for the propylene oxide/CO(2) process (33 kJ.mol(-1)) accounts for the large quantity of cyclic carbonate produced at elevated temperatures in this instance.  相似文献   

6.
碳酸钴由于受生产工艺的制约,生产的产品组分复杂,且市售碳酸钴产品的命名也存在多样性.采用X射线荧光光谱仪、电感耦合等离子体发射光谱仪、元素分析仪、X射线多功能粉末衍射仪和红外吸收光谱仪对某碳酸钴产品的成分进行测定和结构表征.结果表明:该碳酸钴产品钴、碳、氮的含量分别为46.53%、8.31% 和1.48%,相对标准偏差...  相似文献   

7.
Vaidya B  Soper SA  McCarley RL 《The Analyst》2002,127(10):1289-1292
Poly(carbonate), PC, surfaces are chemically modified by treatment with sulfur trioxide gas. Sulfur trioxide gas sulfonates the aromatic rings of the poly(carbonate) surfaces, making the surfaces more hydrophilic. Sulfonation of the poly(carbonate) surface is confirmed by infrared spectroscopy. The modified polymer surfaces are found to be smoother in comparison to their unmodified counterparts, as noted by scanning force microscopy. The effects of the surface modification on electroosmotic flow are studied at a pH range of 4-10. The electroosmotic flow in sulfonated poly(carbonate) microchannels was found to be significantly higher than that in unmodified poly(carbonate) microchannels at pH values below 8.  相似文献   

8.
A series of poly(ester carbonate)s were obtained from adipic acid, 1,3-propanediol and diethyl carbonate in the presence of catalyst Ti(OBu)4 by polycondensation and transestrification process. The amount of monomeric composition was varied in order to get the polymer of different composition. The structure, average molecular weight and physical properties of poly(ester carbonate) were characterized by FT-IR, 1H NMR, solubility, solution viscosity, gel permeation chromatography, differential scanning calorimetry and XRD analysis. Biodegradability of poly(ester carbonate)s was investigated by hydrolytic (pH 7.2 and 11.5), enzymatic using Rhizopus delemar lipase at 37 °C and soil burial test. The biodegradation rate observed was more for poly(ester carbonate) containing 40% and 10% of diethyl carbonate due to their low crystallinity.  相似文献   

9.
The back-extraction of uranium(VI) from di(2-ethylhexyl)phosphoric acid (HDEHP) and diisodecylphosphoric acid (DIDPA) was studied by using hydrazine carbonate as back-extractant. U(VI) was back-extracted from n-dodecane solutions of 0.5M HDEHP - 0.2M TBP and 0.5M DIDPA - 0.1M TBP by hydrazine carbonate. The distribution ratios were decreased with an increase of hydrazine carbonate concentration. The back-extraction equilibria were expressed by slope analysis in consideration of neutralization between the extractant (DIDPA, HDEHP) and hydrazine carbonate, which occurred quantitatively during the back-extraction.  相似文献   

10.
Calcium chloride reacted with sodium carbonate in the presence of a variety of self-assembled molecular aggregates formed by fluoroalkyl end-capped acrylic acid, 2-methacryloyloxyethane sulfonic acid, dimethylacrylamide, and acryloylmorpholine oligomers in aqueous solutions to afford the corresponding fluorinated oligomers/calcium carbonate composites in excellent to moderate isolated yields. These fluorinated calcium carbonate composites thus obtained were shown to have a good dispersibility not only in water but also in traditional organic media including fluorinated solvents. Dynamic light scattering measurements (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that these fluorinated composites are nanometer-size-controlled particles and well dispersed in these media. Cross-linked fluoroalkyl end-capped acrylic acid co-oligomer containing poly(oxyethylene) units was also applied to the preparation of new cross-linked fluorinated calcium carbonate nanocomposites under similar conditions. The obtained cross-linked fluorinated calcium carbonate nanocomposites were found to have an extremely higher dispersibility in aqueous and organic media including fluorinated solvents, compared to that of the corresponding fluoroalkyl end-capped oligomer nanocomposites. In particular, it was verified that these fluorinated calcium carbonate nanocomposites are applicable to the dispersion above poly(methyl methacrylate) (PMMA) film surface. Interestingly, field-emission SEM (FE-SEM) images of the cross-section of the modified PMMA films showed that calcium carbonate particles dispersed into these PMMA films could be arranged regularly above the modified film surface. More interestingly, cross-linked fluorinated oligomeric aggregates were able to provide suitable host moieties for the crystallization of calcium carbonate.  相似文献   

11.
Keats NG  Scaife PH 《Talanta》1966,13(1):156-158
Silver carbonate in silver oxide (Ag(2)O) is determined quantitatively by infrared spectroscopy. The deviation of the results from a mean line is +/-0.2% of Ag(2)CO(3) for samples containing only normal silver carbonate, and +/-0.4% of Ag(2)CO(3) for samples containing both normal and basic silver carbonate.  相似文献   

12.
Poly(carbonate‐urethane‐urea)s (PCUU) based on oligocarbonate diols (Mn ≈ 2000) with different length of the hydrocarbon chain as soft segments were synthesized and investigated. Carbonate oligomerols were obtained in a two‐step method from dimethyl carbonate (DMC) and linear α,ω‐diols (1,4‐butanediol, 1,5‐pentanediol, 1,6‐hexanediol, 1,9‐nonanediol, 1,10‐dekanediol and 1,12‐dodecanediol). Oligo(trimethylene carbonate) diol was synthesized using ring‐opening polymerization of trimethylence carbonate. PCUUs were obtained by prepolymer method using isophorone diisocyanate (IPDI) and water as a chain extender. Changes in polymers properties with increase of methylene group number between carbonate linkages were investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), tensile strength and hardness measurements. The thermal stability was also analyzed by means of thermogravimetric analysis (TGA). Based on FTIR analysis influence of methylene groups number between carbonate linkages on phase separation and concentration of allophanate and biuret groups in the samples were investigated. The obtained poly(carbonate‐urethane‐urea)s exhibited very good mechanical properties. Tensile strength and elongation at break were 40 MPa and 400–600%, respectively, depending on the oligocarbonate used. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this work,the protic ionic liquid[DBUH][Im](1,8-diazabicyclo[5.4.0]-7-undeceniumimidazolide)was developed as an efficient catalyst for the transesterification of ethylene carbonate with methanol to produce dimethyl carbonate.At 70℃,up to 97%conversion of ethylene carbonate and 91%yield of dimethyl ca rbonate were obtained with 1 mol%[DBUH][Im](relative to ethylene carbonate)as catalyst in 2 h.Even at room temperature,the conversion of ethylene carbonate can reach 94%and the yield of dimethyl carbonate can approach 81%for 6 h.Catalytic mechanism investigation showed the high catalytic efficiency of this ionic liquid results from the synergistic activation effect,wherein the cation can activate ethylene carbonate and the anion can activate methanol through hydrogen bond formatio n.Although the reusability of the ionic liquid need to be further improved,high efficiency and comme rcial availability of[DBUH][Im]render it a promising catalyst for the preparation of dimethyl carbonate.  相似文献   

14.
An intermolecular Pd/PPh(3)-catalyzed transesterification of diallyl carbonate with glycerol to generate glycerol carbonate has been developed. Analysis of the reaction kinetics in THF indicates a first-order dependence on Pd and diallyl carbonate, that the Pd bears two phosphines during the turnover limiting event, and that increasing the glycerol concentration inhibits reaction, possibly via change in the polarity of the medium. (13)C isotopic labeling studies demonstrate that the Pd-catalyzed transesterification requires at least one allyl carbonate moiety and that there is rapid equilibrium of the allyl carbonate with CO(2) in solution, even when present only at low concentrations. A mechanism that is consistent with these results involves oxidative addition of the allyl carbonate to Pd followed by reversible decarboxylation, with the intermediate η(1)- and η(3)-allyl Pd alkoxides mediating direct and indirect transesterification reactions with the glycerol. Using this model, successful simulations of the kinetics of reactions conducted under atmospheres of N(2) or CO(2) could be achieved, including switching in selectivity between etherification and transesterification in the early stages of reaction. Reactions with the higher polyols threitol and erythritol are also efficient, generating the terminal (1,2) monocarbonates with high selectivity.  相似文献   

15.
The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures.  相似文献   

16.
The sorption reactions of uranium(VI) at the ferrihydrite(Fh)-water interface were investigated in the absence and presence of atmospherically derived CO(2) by time-resolved in situ vibrational spectroscopy. The spectra clearly show that a single uranyl surface species, most probably a mononuclear bidentate surface complex, is formed irrespective of the presence of atmospherically derived CO(2). The character of the carbonate surface species correlates with the presence of the actinyl ions and changes from a monodentate to a bidentate binding upon sorption of U(VI). From the in situ sorption experiments under mildly acid conditions, the formation of a ternary surface complex is derived where the carbonate ligands coordinate bidentately to the uranyl moiety (≡UO(2)(O(2)CO)(x)). Furthermore, the release reaction of the carbonate ligands from the ternary surface complex is found to be considerably retarded compared to those from the pristine surface suggesting a tighter bonding of the carbonate ions in the ternary complex. Simultaneous sorption of U(VI) and atmospherically derived carbonate onto pristine Fh shows formation of binary monodentate carbonate surface complexes prior to the formation of the ternary complexes.  相似文献   

17.
Carbonate adsorption on goethite in competition with phosphate   总被引:1,自引:0,他引:1  
Competitive interaction of carbonate and phosphate on goethite has been studied quantitatively. Both anions are omnipresent in soils, sediments, and other natural systems. The PO4-CO3 interaction has been studied in binary goethite systems containing 0-0.5 M (bi)carbonate, showing the change in the phosphate concentration as a function of pH, goethite concentration, and carbonate loading. In addition, single ion systems have been used to study carbonate adsorption as a function of pH and initial (H)CO3 concentration. The experimental data have been described with the charge distribution (CD) model. The charge distributions of the inner-sphere surface complexes of phosphate and carbonate have been calculated separately using the equilibrium geometries of the surface complexes, which have been optimized with molecular orbital calculations applying density functional theory (MO/DFT). In the CD modeling, we rely for phosphate on recent parameters from the literature. For carbonate, the surface speciation and affinity constants have been found by modeling the competitive effect of CO3 on the phosphate concentration in CO3-PO4 systems. The CO3 constants obtained can also predict the carbonate adsorption in the absence of phosphate very well. A combination of inner- and outer-sphere CO3 complexation is found. The carbonate adsorption is dominated by a bidentate inner-sphere complex, (FeO)2CO. This binuclear bidentate complex can be present in two different geometries that may have a different IR behavior. At a high PO(4) and CO3 loading and a high Na+ concentration, the inner-sphere carbonate complex interacts with a Na+ ion, probably in an outer-sphere fashion. The Na+ binding constant obtained is representative of Na-carbonate complexation in solution. Outer-sphere complex formation is found to be unimportant. The binding constant is comparable with the outer-sphere complexation constants of, e.g., SO(2-)4 and SeO(2-)4.  相似文献   

18.
The thermal decomposition in air of iron(II) sulphate heptahydrate in the presence of calcium, strontium and barium carbonates has been carried out. The decomposition path varies from carbonate to carbonate. Also, these decompositions are different from those of basic beryllium carbonate and basic magnesium carbonate. The results obtained for the kinetics of thermal decomposition have also been presented.  相似文献   

19.
Poly(carbonate‐urethane) consisting of alternating carbonate and urethane moieties (poly(HC‐MDI)) was prepared by polyaddition of 4,4′‐diphenylmethane diisocyanate (MDI) and a monocarbonate diol bis(3‐hydroxypropyl)carbonate (HC), prepared by hydrolysis of a six‐membered spiroorthocarbonate 1,5,7,11‐tetraoxa‐spiro[5.5]undecane. The polyaddition proceeds without concomitant side reactions including carbonate exchange reaction and affords the desired poly(carbonate‐urethane). The hydrolysis and thermal behaviors of poly(HC‐MDI) were compared with those of the analogous polyurethane carrying no carbonate structure (poly(ND‐MDI)) prepared from MDI and 1,9‐nonanediol (ND). Although the glass transition behaviors are almost identical, poly(HC‐MDI) is less crystalline than poly(ND‐MDI). Poly(HC‐MDI) is more susceptible to hydrolysis than poly(ND‐MDI) probably due to the higher polarity and the lower crystallinity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2802–2808, 2006  相似文献   

20.
The absorption of N(2)O and CO at room temperature on finely divided ZnO surfaces gives reversible absorption bands from surface N(2)O species in the 2237-2245, 2265-2285 and 1245-1255 cm(-1) regions. The growth of the first band is at the expense of the second while its intensity and position depends on the extent of the surface carbonate, formed by the oxidation of CO by N(2)O. The order of introduction of CO and N(2)O, and whether the ZnO surface is oxidised or reduced, gave significantly different results in terms of carbonate formation. The strongest carbonate formation and implied decomposition of N(2)O, occurs at room temperature when CO is added to preadsorbed N(2)O on an oxidised ZnO surface. A single bidentate carbonate is formed under these conditions but on heating in the gas mixture to 200 degrees C an additional, possibly monodentate, carbonate occurs together with a surface formate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号