首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present article reports the spectroscopic investigations on non-covalent interaction of fullerenes C(60) and C(70) with a macrocyclic receptor molecule, namely, 1,3,5,7-tetrahomo-p-tert-butylcalix[8]arene (1) in toluene. Jobs method of continuous variation reveals 1:1 stoichiometry for the fullerene complexes of 1. The most fascinating feature of the present study is that 1 binds selectively C(60) compared to C(70) as obtained from binding constant (K) data of C(60)-1 (K(C60-1)) and C(70)-1 (K(C70-1)) complexes which are enumerated to be 265,000 dm(3) mol(-1) and 63,43 dm(3) mol(-1), respectively, and selectivity in binding (K(C60-1)/K(C70-1)) is estimated to be 4.18 as obtained from UV-Vis study. Steady state fluorescence studies reveal quenching of fluorescence of 1 in presence of fullerenes and the K value of the C(60)-1 and C(70)-1 complexes are estimated to be 80,760 and 68,780 dm(3) mol(-1), respectively, with selectivity in binding (K(C60-1)/K(C70-1)) ~1.18. (1)H NMR analysis provides very good support in favor of strong binding between C(60) and 1. The high value of K value for C(60)-1 complex indicates that 1 forms an inclusion complex with C(60).  相似文献   

2.
As models for a self-aggregative, naturally occurring magnesium-chlorin bacteriochlorophyll-d possessing 3(1)-secondary alcoholic hydroxyl and 13(1)-oxo groups, zinc-chlorins were synthesized with 3(1)-oxo and 13(1)-secondary (1) or tertiary hydroxyl groups (2). Compared to the monomers in a tetrahydrofuran solution, diastereomers 13(1)R-1R and 13(1)S-1S gave red-shifted absorption maxima (643 --> 674 nm in 1R and 708 nm in 1S) in 1 v/v% CH(2)Cl(2)-hexane solution, indicating their self-aggregation. Therefore, the positioning of the two groups at 3(1)/13(1) or 13(1)/3(1) on the N21-N23 molecular (Q(y)) axis is not necessarily important for the self-aggregation. The (1)H NMR and CD spectroscopic studies showed that the 674 nm absorbing species of 1R was characterized as a face-to-face "closed" dimer, while the 708 nm absorbing species of 1S was a large oligomer constructed with aggregation of head-to-tail "open" dimers. This diastereomeric control over the aggregation of 1R and 1S is more pronounced than that observed in the regioisomerically 3(1)-secondary alcoholic R/S-diastereomers 3R and 3S. The difference is ascribable to the conformational fixation of the 13(1)-hydroxyl group of the exo five-membered ring in 1. In contrast to self-aggregative 3(1)-tertiary alcoholic 4, both 13(1)-epimers of 13(1)-tertiary alcoholic 2 were monomeric even in nonpolar organic media: the additional 13(1)-methyl group (1 --> 2) drastically suppressed the self-aggregation due to the interference of the methyl group in intermolecular pi-pi interaction.  相似文献   

3.
IR-dip spectra of trans-acetanilide-water 1:1 cluster, AA-(H(2)O)(1), have been measured for the S(0) and D(0) state in the gas phase. Two structural isomers, where a water molecule binds to the NH group or the CO group of AA, AA(NH)-(H(2)O)(1) and AA(CO)-(H(2)O)(1), are identified in the S(0) state. One-color resonance-enhanced two-photon ionization, (1 + 1) RE2PI, of AA(NH)-(H(2)O)(1) via the S(1)-S(0) origin generates [AA(NH)-(H(2)O)(1)](+) in the D(0) state, however, photoionization of [AA(CO)-(H(2)O)(1)] does not produce [AA(CO)-(H(2)O)(1)](+), leading to [AA(NH)-(H(2)O)(1)](+). This observation explicitly indicates that the water molecule in [AA-(H(2)O)(1)](+) migrates from the CO group to the NH group in the D(0) state. The reorganization of the charge distribution from the neutral to the D(0) state of AA induces the repulsive force between the water molecule and the CO group of AA(+), which is the trigger of the water migration in [AA-(H(2)O)(1)](+).  相似文献   

4.
Surface electron ejection by laser-excited metastables (SEELEM) and LIF spectra of acetylene were simultaneously recorded in the regions of the A1Au-X1Sigmag+ nominal 2(1)3(1)4(2) Ka=1<--00 and 2(1)3(1)6(2) Ka=1<--00 bands near 46,140 cm(-1). The upper states of these two bands are separated by only approximately 100 cm(-1), and the two S1 vibrational levels are known to be strongly mixed by anharmonic and Coriolis interactions. Strikingly different patterns were observed in the SEELEM spectra in the regions of the 2(1)3(1)4(2) and 2(1)3(1)6(2) vibrational levels. Because the equilibrium structure of the T3 electronic state is known to be nonplanar, excitation of nu4 (torsion) and nu6 (antisymmetric in-plane bend) are expected respectively to promote and suppress vibrational overlap between low-lying S1 and T3 vibrational levels. The nearly 50:50 mixed 2(1)3(1)4(2)-2(1)3(1)6(2) character of the S1 vibrational levels rules out this simple Franck-Condon explanation for the different appearance of the SEELEM spectra. A simple model is applied to the SEELEM/LIF spectra to explain the differences between spectral patterns in terms of a T3 doorway-mediated singlet-triplet coupling model.  相似文献   

5.
Single-site polymerization catalysts generated in situ via activation of Cp*MMe(3) (Cp* = C(5)Me(5); M = Ti, Zr), (CGC)MMe(2) (CGC = C(5)Me(4)SiMe(2)NBu(t)(); M = Ti, Zr), and Cp(2)ZrMe(2) with Ph(3)C(+)B(C(6)F(5))(4)(-) catalyze alkylation of aromatic molecules (benzene, toluene) with alpha-chloronorbornene at room temperature, to regioselectively afford the 1:1 addition products exo-1-chloro-2-arylnorbornane (aryl = C(6)H(5) (1a), C(6)H(4)CH(3) (1b)) in good yields. Analogous deuterium-labeled products exo-1-chloro-2-aryl-d(n)-norbornane-7-d(1) (aryl-d(n) = C(6)D(5) (1a-d(6)), C(6)D(4)CD(3) (1b-d(8))) are obtained via catalytic arylation of alpha-chloronorbornene in either benzene-d(6) or toluene-d(8). Isolated ion-pair complexes such as (CGC)ZrMe(toluene)(+)B(C(6)F(5))(4)(-) and Cp(2)ThMe(+)B(C(6)F(5))(4)(-) also catalyze the reaction of alpha-chloronorbornene in toluene-d(8) to give 1b-d(8) in good yields, respectively. Small quantities of the corresponding bis(1-chloronorbornyl)aromatics 2 are also obtained from preparative-scale reactions. These reactions exhibit turnover frequencies exceeding 120 h(-1) (for the Cp*TiMe(3)/Ph(3)C(+)B(C(6)F(5))(4)(-)-catalyzed system), and chlorine-free products are not observed. Compounds 1 and 2 were characterized by (1)H, (2)H, (13)C, and 2D NMR, GC-MS, and elemental analysis. The aryl group exo-stereochemistry in 1a and 1b is established using (1)H-(1)H COSY, (1)H-(13)C HMBC, and (1)H-(1)H NOESY NMR, and is further corroborated by X-ray analysis of the product 1,4-bis(exo-1-chloro-2-norbornyl)benzene (2a). Control experiments and reactivity studies on each component step suggest a mechanism involving participitation of the metal electrophiles in the catalytic cycle.  相似文献   

6.
The electronic spectrum in the region 17?500 cm(-1) to 18?850 cm(-1) of a cold molecular beam of TiO(2) has been investigated using laser induced fluorescence (LIF) and mass-resolved resonance enhanced multi-photoionization (REMPI) spectroscopy. Bands at 18?412 cm(-1), 18?470 cm(-1) and 18?655 cm(-1) were recorded at a resolution of 35 MHz, rotationally analyzed, and assigned as the ?(1)B(2) (0,1,2) ←X[combining tilde](1)A(1) (0,0,0), ?(1)B(2) (1,0,0) ←X[combining tilde](1)A(1) (0,0,0) and ?(1)B(2) (1,1,0) ←X[combining tilde](1)A(1) (0,0,0) transitions. The dispersed fluorescence from the ?(1)B(2) (0,1,2) and ?(1)B(2) (1,0,0) levels were combined with previous results to produce an improved set of vibrational parameters for the X[combining tilde](1)A(1) state. The optical Stark effect in the ?(1)B(2) (0,1,2) ←X[combining tilde](1)A(1) (0,0,0) and ?(1)B(2) (1,0,0) ←X[combining tilde](1)A(1) (0,0,0) bands were recorded and combined with earlier results for ?(1)B(2) (1,1,0) ←X[combining tilde](1)A(1) (0,0,0) to determine the permanent electric dipole moment for these states. The origin and harmonic vibrational constants for the ?(1)B(2) state are determined to be: T(000) = 17?593(5) cm(-1), ω(1) = 876(3) cm(-1), ω(2) = 184(1) cm(-1), and ω(3) = 316(2) cm(-1). A normal coordinate analysis was performed and Franck-Condon factors calculated.  相似文献   

7.
The first time observed excitation spectrum of the C(1)1(5(1)P(1))<--X(1)0+(5(1)S(0)) transition in CdHe van der Waals molecules is reported. Vibrational spectrum in the UV region (2286.0-2296 A) was excited in a continuous molecular-jet-expansion beam of CdHe seeded in helium using an in-house-built nitrogen-dye laser system. The excitation spectrum exhibits two vibrational components (v'<--v'=0) highly broadened by means of unresolved rotational structure and some additional contributions of "hot-bands" components (v'<--v'=1). The last effect is due to an extremely small separation of the vibrational levels in the ground X(1)0+ state of the CdHe molecule, where v'=0 vibrational level is separated from v'=0 by merely 6.0 cm(-1). It follows therefore that even in an extremely cold environment (T(v) approximately 10K) of a jet-expansion beam the population of v'=1 level is feasible, due to some residual collisions, and hence the v'<--v'=1 transitions are highly probable. The assignment of vibrational bands and numerical analysis of the spectrum was based and obtained with the aid of a rigorous computer simulation of the C(1)1<--X(1)0+ transition including the impact of rotational structure and hot-bands contributions. As a result we obtained optical potential parameters of the C(1)1(5(1)P(1)) state of CdHe molecule which are further discussed in terms of our recent (and only existing) experimental results regarding the X(1)0+, B1(5(3)P(1)) and A0+(5(3)P(1)) states of CdHe as well as in terms of ab initio calculations results.  相似文献   

8.
The magnitude of the one-bond coupling constant between C(1) and H(1) in 2,3-anhydro-O-furanosides has been shown to be sensitive to the stereochemistry at the anomeric center. A panel of 24 compounds was studied and in cases where the anomeric hydrogen is trans to the epoxide moiety, (1)J[C(1)-H(1)] = 163-168 Hz; and when this hydrogen is cis to the oxirane ring, ((1)J[C(1)-H(1)] = 171-174 Hz. In contrast, for 2,3-anhydro-S-glycosides, the size of the (1)J[C(1)-H(1)] is not sensitive to C(1) stereochemistry. Computational studies on all four methyl 2,3-anhydro-O-furanosides (5-8) demonstrated that (1)J[C(1)-H(1)] was inversely proportional to the length of the C(1)-H(1) bond. A previously reported equation, which relates C(1)-H(1) bond distance and atomic charges to (1)J[C(1)-H(1)] magnitudes, could be used to accurately predict the J values in the alpha-lyxo (5) and beta-ribo (8) isomers. In contrast, with the beta-lyxo (6) and alpha-ribo isomers (7), this equation underestimated the size of these coupling constants by 10-20 Hz.  相似文献   

9.
Electronic spectra of LiNH(3) and its partially and fully deuterated analogues are reported for the first time. The spectra have been recorded in the near-infrared and are consistent with two electronic transitions in close proximity, the ?(2)E-X(2)A(1) and B(2)A(1)-X(2)A(1) systems. Vibrational structure is seen in both systems, with the Li-N-H bending vibration (ν(6)) dominant in the ?(2)E-X(2)A(1) system and the Li-N stretch (ν(3)) in the B(2)A(1)-X(2)A(1) system. The prominence of the 6(0)(1) band in the ?(2)E-X(2)A(1) spectrum is attributed to Herzberg-Teller coupling. The proximity of the B(2)A(1) state, which lies a little more than 200 cm(-1) above the ?(2)E state, is likely to be the primary contributor to this strong vibronic coupling.  相似文献   

10.
Nonadiabatic theory of molecular spectra of diatomic molecules is presented. It is shown that in the fully nonadiabatic framework, the rovibrational wave functions describing the nuclear motions in diatomic molecules can be obtained from a system of coupled differential equations. The rovibrational wave functions corresponding to various electronic states are coupled through the relativistic spin-orbit coupling interaction and through different radial and angular coupling terms, while the transition intensities can be written in terms of the ground state rovibrational wave function and bound rovibrational wave functions of all excited electronic states that are electric dipole connected with the ground state. This theory was applied in the nearly exact nonadiabatic calculations of energy levels, line positions, and intensities of the calcium dimer in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states. The excited state potentials were computed using a combination of the linear response theory within the coupled-cluster singles and doubles framework for the core-core and core-valence electronic correlations and of the full configuration interaction for the valence-valence correlation, and corrected for the one-electron relativistic terms resulting from the first-order many-electron Breit theory. The electric transition dipole moment governing the A (1)Sigma(u) (+)<--X (1)Sigma(g) (+) transitions was obtained as the first residue of the frequency-dependent polarization propagator computed with the coupled-cluster method restricted to single and double excitations, while the spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction wave functions restricted to single and double excitations. Our theoretical results explain semiquantitatively all the features of the observed Ca(2) spectrum in the A (1)Sigma(u) (+)(1 (1)S+1 (1)D), c (3)Pi(u)(1 (3)P+1 (1)S), and a (3)Sigma(u) (+)(1 (3)P+1 (1)S) manifolds of states.  相似文献   

11.
Synthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported. The enthalpy of reaction of 1-H and 2 in toluene solution has been measured by solution calorimetry (DeltaH = -13.1 +/- 0.7 kcal mol(-1)) and used to estimate the Mo-H bond dissociation enthalpy (BDE) in 2-H as 62 kcal mol(-1). The enthalpy of reaction of 1-H and 2-NCPh in toluene solution was determined calorimetrically as DeltaH = -35.1 +/- 2.1 kcal mol(-1). This value combined with the enthalpy of hydrogenation of [Mo(CO)3(Cp)]2 (1(2)) gives an estimated value of 90 kcal mol(-1) for the BDE of the ketimide C-H of 2-NC(H)Ph. These data led to the prediction that formation of 2-NC(H)Ph via nitrile insertion into 2-H would be exothermic by approximately 36 kcal mol(-1), and this reaction was observed experimentally. Stopped flow kinetic studies of the rapid reaction of 1-H with 2-NCPh yielded DeltaH(double dagger) = 11.9 +/- 0.4 kcal mol(-1), DeltaS(double dagger) = -2.7 +/- 1.2 cal K(-1) mol(-1). Corresponding studies with DMo(CO)3(Cp) (1-D) showed a normal kinetic isotope effect with kH/kD approximately 1.6, DeltaH(double dagger) = 13.1 +/- 0.4 kcal mol(-1) and DeltaS(double dagger) = 1.1 +/- 1.6 cal K(-1) mol(-1). Spectroscopic studies of the much slower reaction of 1-H and 2 yielding 2-H and 1/2 1(2) showed generation of variable amounts of a complex proposed to be (Ar[t-Bu]N)3Mo-Mo(CO)3(Cp) (1-2). Complex 1-2 can also be formed in small equilibrium amounts by direct reaction of excess 2 and 1(2). The presence of 1-2 complicates the kinetic picture; however, in the presence of excess 2, the second-order rate constant for H atom transfer from 1-H has been measured: 0.09 +/- 0.01 M(-1) s(-1) at 1.3 degrees C and 0.26 +/- 0.04 M(-1) s(-1) at 17 degrees C. Study of the rate of reaction of 1-D yielded kH/kD = 1.00 +/- 0.05 consistent with an early transition state in which formation of the adduct (Ar[t-Bu]N)3Mo...HMo(CO)3(Cp) is rate limiting.  相似文献   

12.
The phosphane (C(6)H(4)-2-CH(2)NMe(2))(3)P (1) upon recrystallization from various solvents yielded the structurally different forms 1A, 1C, 1B(1), and 1B(2). Phosphane oxide (C(6)H(4)-2-CH(2)NOMe(2))(3)PO (2) was obtained from 1 by oxidation with hydrogen peroxide. X-ray analysis provided molecular structures for 1A, 1B(1), 1B(2), and 2. Phosphanes 1A and 1B(1) have pseudohexacoordinate frameworks as a result of the formation of two P-N donor interactions, 1B(2) has a pseudoheptacoordinate geometry due to the presence of three P-N interactions, and 2 resides in a tetrahedral geometry. The presence of the flexible dimethylaminobenzyl group in 1A, 1C, 1B(1), and 1B(2) is reasoned to be responsible for this variation in coordination geometry. Phosphane oxide 2 has very strong donor oxygen atoms from N-oxide groups but they are involved in competition with the presence of hydrogen bonding, which results in the lack of donor coordination. High-resolution (1)H, (13)C, and (31)P NMR measurements are also reported. The results provide evidence for the low-energy threshold required to allow hypercoordinated phosphorus to alter coordination geometry.  相似文献   

13.
Electron-phonon interactions in the charged cubic fluorocarbon, (CF)8 are studied, and compared with those in charged (CH)8 and (CD)8. The A1g mode of 1470 cm(-1) much more strongly couples to the a1g lowest unoccupied molecular orbitals (LUMO) than the A1g mode of 554 cm(-1) in (CF)8. The T2g mode of 1030 cm(-1), the Eg mode of 980 cm(-1), and the A1g mode of 1470 cm(-1) strongly couple to the t2u highest occupied molecular orbitals (HOMO) in (CF)8. The total electron-phonon coupling constants for the monoanion (l(-1)) and monocation (l(+1)) of (CF)8 are estimated to be 0.932 and 0.585 eV, respectively. The logarithmically averaged phonon frequencies for the monoanion (omega(ln,-1)) and monocation (omega(ln,+1)) of (CF)8 are estimated to be 1365 and 998 cm(-1), respectively. The l(-1) and omega(ln,-1) values increase much more significantly by H-F substitution than by H-D substitution in cubane. The larger displacements of carbon atoms in the high frequency vibronic active mode in (CF)8 than those in (CD)8 due to larger atomic mass of fluorine than that of deuterium, and the unchanged electron distributions in the LUMO somewhat localized on carbon atoms as a consequence of H-F and H-D substitution in cubane, are the main reason why the l(-1) and omega(ln,-1) values increase much more significantly by H-F substitution than by H-D substitution. The l(+1) and omega(ln,+1) values less significantly change than the l(-1) and omega(ln,-1) values by H-F substitution as well as by H-D substitution in cubane. This is because the t2u HOMO in (CF)8 and the t2g HOMO in (CH)8 are somewhat localized on fluorine atoms, and thus, the high frequency vibronic active modes in which the displacements of carbon atoms are large cannot necessarily very strongly couple to the HOMO somewhat localized on fluorine atoms in (CF)8.  相似文献   

14.
The rate coefficient of the reaction NH(X (3)Sigma(-))+D((2)S)-->(k(1) )products (1) is determined in a quasistatic laser-flash photolysis, laser-induced fluorescence system at low pressures. The NH(X) radicals are produced by quenching of NH(a (1)Delta) (obtained in the photolysis of HN(3)) with Xe and the D atoms are generated in a D(2)/He microwave discharge. The NH(X) concentration profile is measured in the presence of a large excess of D atoms. The room-temperature rate coefficient is determined to be k(1)=(3.9+/-1.5) x 10(13) cm(3) mol(-1) s(-1). The rate coefficient k(1) is the sum of the two rate coefficients, k(1a) and k(1b), which correspond to the reactions NH(X (3)Sigma(-))+D((2)S)-->(k(1a) )ND(X (3)Sigma(-))+H((2)S) (1a) and NH(X (3)Sigma(-))+D((2)S)-->(k(1b) )N((4)S)+HD(X (1)Sigma(g) (+)) (1b), respectively. The first reaction proceeds via the (2)A(") ground state of NH(2) whereas the second one proceeds in the (4)A(") state. A global potential energy surface is constructed for the (2)A(") state using the internally contracted multireference configuration interaction method and the augmented correlation consistent polarized valence quadrupte zeta atomic basis. This potential energy surface is used in classical trajectory calculations to determine k(1a). Similar trajectory calculations are performed for reaction (1b) employing a previously calculated potential for the (4)A(") state. The calculated room-temperature rate coefficient is k(1)=4.1 x 10(13) cm(3) mol(-1) s(-1) with k(1a)=4.0 x 10(13) cm(3) mol(-1) s(-1) and k(1b)=9.1 x 10(11) cm(3) mol(-1) s(-1). The theoretically determined k(1) shows a very weak positive temperature dependence in the range 250< or =TK< or =1000. Despite the deep potential well, the exchange reaction on the (2)A(") ground-state potential energy surface is not statistical.  相似文献   

15.
The absorption cross-sections at room temperature are reported for the first time, of Br2 vapor in overlapping bound-free and bound-bound transition of A(3)pi1u <-- Xsigma(g)+, X(1)pi1u <-- X(1)sigma(g)+ and B(3)pi0u <-- X(1)sigma(g)+, using cavity ring down spectroscopy (CRDS) technique. We reported here, the A(3)pi1u <-- X(1)sigma(g)+, transition is included along with the two stronger X(1)pi1u <-- X(1)sigma(g)+ and B(3)pi0u <-- X(1)sigma(g) transitions of Br2. We obtained discrete absorption cross-section in the rotational structure, the continuum absorption cross-sections, and were also able to measure the absorption cross-section in separate contribution of A(3)pi1u <-- X(1)sigma(g)+, (1)pi1u <-- X(1)sigma(g)+, and B(3)pi0u <-- X(1)sigma(g)+ transitions using CRDS method to use quantum yield of Br*((2)P(1/2)). We obtained absorption cross-section order 10(-19) cm2 and detection 10(13) molecule cm(-3) (1 mTorr) of Br2. The absorption cross-sections are increasing with increasing excitation energy in the wavelength region 510-535 nm.  相似文献   

16.
The excitation of the v(3) = 1 (σ(g)(+) C-C stretch) and the v(7) = 2 (π(g)(2) C≡C-C bend) modes in the A(2)Π(u) electronic state of diacetylene cations results in Renner-Teller (R-T) and Fermi interactions. The 3(0)(1) and 7(0)(2) vibronic bands in the A(2)Π(u)-X(2)Π(g) transition of HC(4)H(+) have been measured with rotational resolution using cavity ringdown spectroscopy in a supersonic slit jet discharge. The analysis yields T(00) = 20520.828(4) cm(-1), B' = 0.14047(2) cm(-1), and A' = -17.95(1) cm(-1) for the v(3) = 1 and T(00) = 20573.659(4) cm(-1), B' = 0.14018(3) cm(-1), and A' = -11.55(1) cm(-1) for the v(7) = 2 level in the A(2)Π(u) electronic state. A vibronic analysis has been carried out taking into consideration the R-T, spin-orbit, and Fermi resonance interactions between the ν(3) and ν(7) modes. The levels are fitted to the eigenvalues of an appropriate Hamiltonian matrix. This yields the vibrational frequencies ω(3)′ = 811.8 cm(-1) and ω(7)′ = 403.2 cm(-1), Renner parameter ε(7)′ = 0.065, Fermi coefficients W(1)′ = 10.3 cm(-1) and W(2)′ = 5.1 cm(-1), and spin-orbit interaction constant A(SO)′ = -31.1 cm(-1). A corresponding R-T analysis has been carried out for the X(2)Π(g) ground state of HC(4)H(+) using data available in the literature [Callomon, J. H. Can. J. Phys. 1956, 34, 1046]. This gives ω(3)" = 956.2 cm(-1), ω(7)" = 435.4 cm(-1), ε(7)" = 0.028, W(1)" = 7.2 cm(-1), W(2)" = 10.9 cm(-1), and A(SO)" = -33.3 cm(-1).  相似文献   

17.
2-Benzoylpyridine thiosemicarbazone {R(1)R(2)C(2)=N(2)·N(3)H-C(1)(=S)-N(4)H(2), R(1) = py-N(1), R(2) = Ph; Hbpytsc} with copper(I) iodide in acetonitrile-dichloromethane mixture has formed stable Cu(II)-I bonds in a dark green Cu(II) iodo-bridged dimer, [Cu(2)(II)(μ-I)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 1. Copper(I) bromide also formed similar Cu(II)-Br bonds in a dark green Cu(II) bromo-bridged dimer, [Cu(2)(II)(μ-Br)(2)(η(3)-N(1),N(2),S-bpytsc)(2)] 3. The formation of dimers 1 and 3 appears to be due to a proton coupled electron transfer (PCET) process wherein copper(I) loses an electron to form copper(II), and this is accompanied by a loss of -N(3)H proton of Hbpytsc ligand resulting in the formation of anionic bpytsc(-). When copper(I) iodide was reacted with triphenylphosphine (PPh(3)) in acetonitrile followed by the addition of 2-benzoylpyridine thiosemicarbazone in dichloromethane (Cu?:?PPh(3)?:?Hbpytsc in the molar ratio 1:1:1), both Cu(II) dimer 1 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)I(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 2 were formed. Copper(I) bromide with PPh(3) and Hbpytsc also formed Cu(II) dimer 3 and an orange Cu(I) sulfur-bridged dimer, [Cu(2)(I)Br(2)(μ-S-Hbpytsc)(2)(PPh(3))(2)] 4. While complexes 2 and 4 exist as sulfur-bridged Cu(I) dimers, 1 and 3 are halogen-bridged. The central Cu(2)S(2) cores of 2 and 4 as well as Cu(2)X(2) of 1 (X = I) and 3 (X = Br) are parallelograms. One set of Cu(II)-I and Cu(II)-Br bonds are short, while the second set is very long {1, Cu-I, 2.565(1), 3.313(1) ?; 3, Cu-Br, 2.391(1), 3.111(1) ?}. The Cu···Cu separations are long in all four complexes {1, 4.126(1); 2, 3.857(1); 3, 3.227(1); 4, 3.285(1) ?}, more than twice the van der Waals radius of a Cu atom, 2.80 ?. The pyridyl group appears to be necessary for stabilizing the Cu(II)-I bond, as this group can accept π-electrons from the metal.  相似文献   

18.
The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.  相似文献   

19.
Heterodinuclear [(Ni (II)L)Ln (III)(hfac) 2(EtOH)] (H 3L = 1,1,1-tris[(salicylideneamino)methyl]ethane; Ln = Eu, Gd, Tb, and Dy; hfac = hexafluoroacetylacetonate) complexes ( 1.Ln) were prepared by treating [Ni(H 1.5L)]Cl 0.5 ( 1) with [Ln(hfac) 3(H 2O) 2] and triethylamine in ethanol (1:1:1). All 1.Ln complexes ( 1.Eu, 1.Gd, 1.Tb, and 1.Dy) crystallized in the triclinic space group P1 (No. 2) with Z = 2 with very similar structures. Each complex is a face-sharing dinuclear molecule. The Ni (II) ion is coordinated by the L (3-) ligand in a N 3O 3 coordination sphere, and the three phenolate oxygen atoms coordinate to an Ln (III) ion as bridging atoms. The Ln (III) ion is eight-coordinate, with four oxygen atoms of two hfac (-)'s, three phenolate oxygen atoms of L (3-), and one ethanol oxygen atom coordinated. Temperature-dependent magnetic susceptibility and field-dependent magnetization measurements showed a ferromagnetic interaction between Ni (II) and Gd (III) in 1.Gd. The Ni (II)-Ln (III) magnetic interactions in 1.Eu, 1.Tb, and 1.Dy were evaluated by comparing their magnetic susceptibilities with those of the isostructural Zn (II)-Ln (III) complexes, [(ZnL)Ln(hfac) 2(EtOH)] ( 2.Ln) containing a diamagnetic Zn (II) ion. A ferromagnetic interaction was indicated in 1.Tb and 1.Dy, while the interaction between Ni (II) and Eu (III) was negligible in 1.Eu. The magnetic behaviors of 1.Dy and 2.Dy were analyzed theoretically to give insight into the sublevel structures of the Dy (III) ion and its coupling with Ni (II). Frequency dependence in the ac susceptibility signals was observed in 1.Dy.  相似文献   

20.
The extensive search for the global minimum structure of Hf3 at the B3LYP/LANL2DZ level of theory revealed that D3h 3A2' (1a1'(2)1a2'(2)1e'(4)2a1'(2)1e'2) and D3h 1A1' (1a1'(2)2a1'(2)1e'(4)1a2'(2)3a1'2) are the lowest triplet and singlet states, respectively, with the triplet state being the lowest one. However, at the CASSCF(10,14)/Stuttgart+2f1g level of theory these two states are degenerate, indicating that at the higher level of theory the singlet state could be in fact the global minimum structure. The triplet D3h 3A2' (1a1'21a2'(2)1e'(4)2a1'(2)1e'2) structure is doubly (sigma- and pi-) aromatic and the singlet D3h 1A1' (1a1'(2)2a1'(2)1e'(4)1a2'(2)3a1'2) structure is the first reported triply (sigma-, pi-, and delta-) aromatic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号