首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The synthesis is reported of 3-aminopropyl 3-O-[4-O(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-α-L-rhamnopyranoside (34), 3-aminopropyl 2-acetamido-3-O-[4-0-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-2-deoxy-β-D-galactopyranoside (37), 3-aminopropyl 3-O-[4-O-(β-L-rhamnopyranosyl)-α-D-glucopyranosyl]-α-D-galactofuranoside (41), and 3-aminopropyl 4-O-[4-O-(β-L-rhamnopyranosyl)-β-D-glucopyranosyl]-β-D-galactopyranoside (45). These are spacer-containing fragments of the capsular polysaccharides of Streptococcus pneumoniae type 2, 7F, 22F, and 23F, respectively, which are constituents of Pneumovax© 23. 2,3,4-Tri-O-benzyl-α-L-rhamnopyranosyl bromide was coupled to l,6-anhydro-2,3-di-(O-benzyl-β-D-glucopyranose (3). Opening of the anhydro ring, removal of AcO-1, and imidation of l,6-anhydro-2,3-di- O-benzyl-4-O-(2,3,4-tri-O-benzyl-β-L-rhamnopyranosyl)-β-D-glucopyranose (4β) afforded 6-O-acetyl-2,3-di-O-ben-zyl-4-O-(2,3,4-tri- O-benzyl-β-L-rhamnopyranosyl)-αβ-D-glucopyranosyl trichloroacet-imidate (7αβ). Condensation of 7αβ with 3-N-benzyloxycarbonylaminopropyl 2-O-ben-zyl-5,6-O-isopropylidene-α-D-galactofuranoside (26), followed by deprotection gave 41 Opening of the anhydro ring of 4 p followed by debenzylation, acerylauon, removal of AcO-1, and imidation yielded 2,3,6-tri-(9-aceryl-4-O-(2,3,4-tri-0-acetyl-P-L-rharnnopyran-.-osyl)-α-D-glucopyranosyl trichloroacetimidate (11). Condensation of 11 with 3-N-bcn-zyloxycarbonylaminopropyl 2,4-di-O-benzyl-α-L-rhamnopyranoside (18), with 3-N-bcn-zyloxycarbonylaminopropyl 2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyran-oside (21), or with 3-N -benzyloxycarbonylaminopropyl 2-O-acetyl-3-O-allyl-6-O-benzyl-β-D-galactopyranoside (31), followed by deprotection afforded 34, 37, and 45, respectively.  相似文献   

2.
Abstract

A carboxylate-containing pentasaccharide, methyl O-(β-d-galactopyranosyl)-(1→4)-O-(β-d-glucopyranosyl)-(1→6)-O-{3-O-[(S)-1-carboxyethyl]-β-d-galactopyranosyl-(1→4)-O}-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-β-d-galactopyranoside (27) was synthesized by block condensation of suitably protected donors and acceptors. Phenyl 3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (17) was condensed with methyl 2,4,6-tri-O-benzyl-β-d-galactopyranoside (4) to afford a disaccharide, methyl O-(3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (18). Removal of chloroacetyl groups gave 4,6-diol, methyl 0-(3-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (19), in which the primary hydroxy group (6-OH) was then selectively chloroacetylated to give methyl O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (20). This acceptor was then coupled with 2,4,6-tri-O-acetyl-3-O-[(S)-1-(methoxycarbonyl)ethyl]-α-d-galactopyranosyl trichloroacetimidate (14) to afford a trisaccharide, methyl O-{2,4,6-tri-O-acetyl-3-O-[(S)-l-(methoxycarbonyl)ethyl]-β-d-galactopyranosyl}-(1→4)-O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (21). Removal of the 6-O-chloroacetyl group in 21 gave 22, which was coupled with 4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-2,3,6-tri-O-acetyl-α-d-glucopyranosyl trichloroacetimidate (23) to yield protected pentasaccharide 24. Standard procedures were used to remove acetyl groups and the phthalimido group, followed by N-acetylation, and debenzylation to yield pentasaccharide 27 and a hydrazide by-product (28) in a 5:1 ratio, respectively. Compound 27 contains a complete repeating unit of the capsular polysaccharide of type III group B Streptococcus in which terminal sialic acid is replaced by an (S)-1-carboxyethyl group.  相似文献   

3.
ABSTRACT

Treatment of methyl 2,3-di-O-benzyl-α-D-glucopyranoside (1), methyl 2,3-di-O-acetyl-α-D-glucopyranoside (4), 3-O-benzyl-1,2-O-(1-methylethylidene)-α-D-glucofuranose (6), 3-O-acetyl-1,2-O-(1-methylethylidene)-α-D-glucofuranose (9), 1,2-O-(1-methylethylidene)-α-D-xylofuranose (11) and methyl 2,3-di-O-acetyl-α-D-galactopyranoside (15) with diisopropylazodicarboxylate-triphenylphosphine in tetrahydrofuran led to the corresponding dioxaphosphoranes, which were opened by trimethylsilyl azide affording the silylated primary azidodeoxysugars. When the same reaction was performed on methyl 2,3-di-O-benzyl-α-D-galactopyranoside (20), an inversion of the regioselectivity of the dioxaphosphorane opening was observed, leading mainly to the 4-azido-4-deoxy-α-D-glucopyranoside derivative 27.  相似文献   

4.
Abstract

KDN-Lex ganglioside analogs (10, 13, 16 and 19) containing the modified reducing terminal and L-rhamnose in place of L-fucose have been synthesized. Glycosidation of methyl 2,3,4-tri-O-benzyl-1-thio-α-L-rhamnopyranoside (1) with 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-α-D-galacopyranoside (2), followed by reductive ring opening of the benzylidene acetal, gave 2-(trimethylsilyl)ethyl O-(2,3,4-tri-O-benzyl-α-L-rhamnopyranosyl)-(1→3)-O-(2-acet-amido-6-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (4). The tetrasaccharide 4 was coupled with methyl O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-galactopyranoside(5), using dimethyl(methylthio)sulfonium triflate (DMTST), to give the hexasaccharide 6, which was converted into compound 11 in the usual manner. Compounds 8 and 11 were transformed, via bromination of the reducing terminal, radical reduction, O-deacylation and saponification of the methyl ester, into the desired KDN-Lex hexasaccharides (10, 13). On the other hand, glycosylation of 2-(tetradecyl)hexadecanol with α-trichloroacetimidates 14 and 17, afforded the target ganglioside analogs 16 and 19.

  相似文献   

5.
Abstract

Using methyl 2,2-bis(ethylthio)propionate as acetalating agent and triflic acid-sulfuryl chloride as catalyst, synthesis of 2,3-trans diequatorial pyruvate ketal was achieved. Starting from D-galactose and L-rhamnose derivatives, methyl 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl-(1→4)-6-O-benzyl-2,3-O-(1-methoxycarbonyl)ethylidene- α-D-galactopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside and methyl 4,6-di-O-benzyl-2,3-O-(1-methoxy-carbonyl)ethylidene-α-D-galactopyranosyl-(1→3)-2,4-di-O-benzyl-α-L-rhamnopyranoside were synthesized. Removal of the protecting groups from the former, afforded the trisaccharide repeating unit of the K-antigen from E.coli O101:K103:H? in the form of its methyl glycoside methyl ester.  相似文献   

6.
ABSTRACT

The behavior of 3,4- and 4,6-cyclic sulfates derived from benzyl 2,6- and 2,3-di-O-benzyl-β-D-galactopyranosides toward hydrolysis has been studied using aqueous sodium hydroxide under various conditions. Starting from benzyl 2,6-di-O-benzyl-3,4-O-sulfuryl-β-D-galactopyranoside (5), the reaction with aq NaOH in THF gave both 3- and 4-monosulfates 7 and 8 (83%, in 68:32 ratio), while the reaction in DMF led unexpectedly to the 4-deoxy-3-keto derivative 10 in 77% yield after acidic hydrolysis of the intermediate enolester 9. On the other hand, when benzyl 2,3-di-O-benzyl-4,6-O-sulfuryl-β-D-galactopyranoside (6) was treated with aq NaOH in THF, a mixture of benzyl 2,3-di-O-benzyl-6-deoxy-4-O-(sodium sulfonato)-α-L-arabino-hex-5-enopyranoside (11) and benzyl 2,3-di-O-benzyl-4-deoxy-6-O-(sodium sulfonato)-α-L-threo-hex-4-enopyranoside (12) (in 65:35 ratio) was obtained in 93% yield, giving a new and rapid access to 11, a potential precursor of L-sugars derivatives. Alternatively, BzONBu4 gave a regiospecific opening reaction of 6 and led to the 6-O-benzoate 4-O-sulfate derivative (13) in excellent yield.  相似文献   

7.
Abstract

Methyl 6-O-, 3-O- and 2-O-(2′-hydroxypropyl)-α-D-glucopyranosides (4,8, and 12) were synthesized starting from methyl 2,3,4-tri-O-benzyl-α-D-glucopyranoside (1), methyl 4,6-O-benzylidene-α-D-glucopyranoside (5), and methyl 3-O-benzyl-4,6-O-benzylidene-D-glucopyranoside (9), respectively. Overall yields were 88%, 6% and 26% of 4, 8 and 12, respectively, with the 2-ether (12) being crystalline and the 3-ether (8) a single diastereomer.

  相似文献   

8.
Abstract

DAST-assisted rearrangement of 3-O-allyl-4-O-benzyl-α-l-rhamnopyranosyl azide followed by treatment of the generated fluorides with ethanethiol and BF3·OEt2 gave glycosyl donor ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside. Stereoselective glycosylation of methyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside with ethyl 3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-1-thio-α/β-l-glucopyranoside, under the agency of NIS/TfOH afforded methyl 3-O-(3-O-allyl-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzyli-dene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Removal of the allyl function of the latter dimer, followed by condensation with properly protected 2-azido-2-deoxy-glucosyl donors, in the presence of suitable promoters, yielded selectively methyl 3-O-(3-O-[6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranosyl]-2-azido-4-O-benzyl-2,6-dideoxy-α-l-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-2-phthalimido-β-D-glucopyranoside. Deacetylation and subsequent glycosylation of the free HO-6 with phenyl 2,3,4,6-tetra-O-benzoyl-1-seleno-β-D-glucopyranoside in the presence of NIS/TfOH furnished a fully protected tetrasaccharide. Deprotection then gave methyl 3-O-(3-O-[6-O-{β-D-glucopyranosyl}-2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-acetamido-2,6-dideoxy-α-L-glucopyranosyl)-2-acetamido-2-deoxy-β-D-glucopyranoside.  相似文献   

9.
Abstract

Easily accessible benzyl 2,3-O-isopropylidene-α-D-mannofuranoside (1) was converted in six steps into benzyl 2,3-O-isopropylidene-5-N-benzyl-5-deoxy-6-O-benzyl-α-D-mannofuranoside or benzyl 2,3-O-isopropylidene-5-azido-5-deoxy-6-O-benzyl-α-D-mannofuranoside. Both compounds afforded, after hydrogenolysis and acidolysis, 1-deoxymannojirimycin in an overall yield of 38% based on 1.  相似文献   

10.
ABSTRACT

3-O-Sulfo glucuronyl neolactohexanosyl ceramide derivatives (heptasaccharides) have been synthesized. Condensation of 2-(trimethylsilyl)ethyl 2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 4-O-acetyl-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (1) gave the desired β-glycoside 3, which was converted into 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (4) via removal of the O-acetyl and N-phthaloyl groups, followed by N-acetylation. Glycosylation of 4 with O-(methyl 4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-β-D-glucopyranosyluronate)-(1→3)-2,4,6-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (5) using trimethylsilyl trifluoromethanesulfonate gave the target tetrasaccharide 6, which was transformed via removal of the benzyl group, O-benzoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the tetrasaccharide donor 9. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (10) with the imidate donor 9 using trimethylsilyl trifluoromethanesulfonate gave the desired heptasaccharide 11, which was transformed into the heptasaccharide imidate donor 14. Glycosylation of (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) with 14 gave β-glycoside 16, which was transformed into the four target compounds, via reduction of the azido group, coupling with octadecanoic acid or tetracosanoic acid, selective removal of the levulinoyl group, O-sulfation, hydrolysis of the methyl ester group and O-deacylation.  相似文献   

11.
ABSTRACT

Easily accessible 1,6-anhydro-2,3-O-(S)-benzylidene-β-D-mannopyranose was converted in four steps to 1,6-anhydro-3,4-di-O-benzyl-β-D-talopyranose. Glycosylation of the latter with ethyl 2,3,4-tri-O-acetyl-1-thio-α-L-rhamnopyranoside gave, after further processing, 1-O-allyl-3,4-di-O-benzyl-2-O-(2,3,4-tri-O-benzyl-α-L-rhamnopyranosyl)-L-ribitol.  相似文献   

12.
Abstract

Starting from L-fucose, D-glucose and lactose, methyl O-[2,3-di-O-benzoyl-4, 6-O-(4-methoxybenzylidene)-β-D-glucopyranosyl]-(1→4)-2,3-di-O-benzoyl-α-L-fucopyranoside and methyl O-(2,3,4,6-tetra-O-benzyl-β-D-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-α-D-glucopyranosyl)-(1→4)-O-(methyl 2,3-di-O-benzoyl-β-D-glucopyranosyluronate)-(1→4)-2,3-di-O-benzoyl-α-L-fucopyranoside were synthesized. Removal of protecting groups gave the tetrasaccharide repeating unit of the antigen from Klebsiella type-16 in the form of its methyl ester methyl glycoside.  相似文献   

13.
ABSTRACT

3-O-Sulfo glucuronyl paragloboside derivatives (pentasaccharides) have been synthesized. The important intermediate designed for a facile sulfation in the last step and effective, stereocontrolled glycosidation, methyl (4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-α-D-glucopyranosyl trichloroacetimidate)uronate (8) was prepared from methyl [2-(trimethylsilyl)ethyl β-D-glucopyranosid]uronate (3) via selective 4-O-acetylation, 2-O-benzoylation, 3-O-levulinoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation. The glycosylation of 8 with 2-(trimethylsilyl)ethyl 2,4,6-tri-O-benzyl-β-D-galactopyranoside (9) using trimethylsilyl trifluoromethanesulfonate gave 2-(trimethylsilyl)ethyl O-(methyl 4-O-acetyl-2-O-benzoyl-3-O-levulinoyl-β-D-glucopyranosyluronate)-(1→3)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (10), which was transformed via removal of the benzyl group, benzoylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the disaccharide donor 13. On the other hand, 2-(trimethylsilyl)ethyl O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (20) as the acceptor was prepared from 2-(trimethylsilyl)ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (14) via O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, imidate formation, coupling with 2-(trimethylsilyl)ethyl O-(2,4,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (18), removal of the O-acetyl and N-phthaloyl group followed by N-acetylation. Condensation of 13 with 20 using trimethylsilyl trifluoromethanesulfonate afforded the desired pentasaccharide 21, which was transformed by removal of the benzyl group, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group and imidate formation into the pentasaccharide donor 24. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (25) with 24 gave the desired β-glycoside 26, which was transformed into the four target compounds, via reduction of the azido group, coupling with octadecanoic acid or tetracosanoic acid, selective removal of the levulinoyl group, O-sulfation, hydrolysis of the methyl ester group and O-deacylation.  相似文献   

14.
The trisaccharide derivative methyl 2-O-[4,6-di-O-acetyl-3-O-(2,3,4,6-tetra-O-benzyl-α-D-gal-actopyranosyl)-2-deoxy-2-phthalimido-β-D-gluco-pyranosyl]-4,6-O-benzylidene-β-D-mannopyranoside (12) was obtained when 3-O-(2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl)-4,6-di-Oacetyl-2-deoxy-2-phtha-limido-β-D-glucopyranosyl trichloroacetimidate (8) was allowed to react with methyl 3-O-benzyl-4,6-O-benzylidene-β-D-mannopyranoside (11) in presence of trimethylsilyl triflate. Removal of protecting groups then gave the desired trisaccharide.  相似文献   

15.
Abstract

1,6-Anhydro-2-deoxy-3,4-di-O-benzyl-2-phthalimido-β-d- glucopyranose (5) was synthesized from 1,6-anhydro-β-d-mannopyranose (1) in five steps. Compound 5 was polymerized under cationic conditions and selectively yielded glucosamine oligomers (degree of polymerization 5-7). Copolymerization of 5 with 1,6-anhydro-2,3,4-tri-O-benzyl-β-d-glucopyranose indicated the low reactivity of 5 with the active cation derived from 5. Deprotection of 2-deoxy-3,4-di-O-benzyl-2-phthalimido-(1→6)-β-d-glucopyranan (7) and N-acetylation gave 2-acetamido-2-deoxy-(1→6)-β-d-glucopyranan (9).  相似文献   

16.
Abstract

The first total synthesis of tumor-associated glycolipid antigen, sialyl Lea, is described. Methylsulfenyl bromide-silver triflate-promoted coupling of 2-(trimethylsilyl)ethyl O-(2-acetamido-6-O-benzyl-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (2) with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (3) afforded the pentasaccharide 4a and 5a in good yields. Glycosylation of 4a with methyl 2,3,4-tri-O-benzyl-1-thio-β-l-fucopyranoside (6) by use of N-iodosuccinimide (NIS) — trifluoromethanesulfonic acid (TfOH) as a promoter, gave the desired hexasaccharide 7. Compound 7 was converted into the α-trichloroacetimidate 10, via reductive removal of benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1, 3-diol (11), gave the β-glycoside 12. Finally, 12 was transformed, via selective reduction of the azide group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

17.
ABSTRACT

Two derivatives of β-maltosyl-(1→4)-trehalose monodeoxygenated at positions 4 or 4′″ have been synthesized in [2+2] block syntheses. After the preparation of precursors with only one free hydroxyl group the deoxy function was introduced by a Barton-McCombie reaction. Thus, glycosylation of 2,3,6-tri-O-benzyl-α-D-glucopyranosyl 2,3,6-tri-O-benzyl-α-D-glucopyranoside (4) with octa-O-acetyl-β-maltose (3) gave tetrasaccharide 5 with only one free hydroxyl group at the 4-position. The 4′-position of an allyl maltoside was available selectively after removal of a 4′,6′-cyclic acetal and selective benzoylation of the 6′-position. Reduction of this derivative 11 afforded allyl O-(2,3-di-O-acetyl-6-O-benzoyl-4-deoxy-α-D-glucopyranosyl)-(1→4)-2,3,6-tri-O-acetyl-β-D-glucopyranoside (14), which was deallylated, activated as an trichloroacetimidate, and coupled to 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranosyl 2′,3′,6′-tri-O-benzyl-α-D-glucopyranoside (20). Several compounds were fully characterized by 1H NMR spectroscopy. Deprotection furnished the monodeoxygenated tetrasaccharides 9 and 23.  相似文献   

18.
ABSTRACT

The partially deprotected trisaccharide 17 has been synthesized as an analogue of the repeating unit of the backbone of rhamnogalacturonan I. The trisaccharide 17 was obtained after prior selective derivatization of HO-3 and HO-4 of a rhamnopyranose cyanoethylidene glycosyl donor, followed by coupling with a tritylated galactopyranosyluronic acceptor (11), selective removal of the acetyl group at the O-2' position of the formed disaccharide 12, and glycosylation of the HO-2' position with methyl (ethyl 2,3-di-O-benzyl-4-O-p-methoxybenzyl-1-thio-β-D-galactopyranosid)uronate (14) providing methyl (methyl 2,3-di-O-benzyl-4-O-p-methoxybenzyl-α-D-galactopyranosyluronate)-(1→2)-(4-O-benzoyl-3-O-benzyl-α-L-rhamnopyranosyl)-(1→4)-(allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate (15). Finally, palladium chloride catalyzed deallylation (16) and hydrogenolysis over Pd-C resulted in methyl (methyl α-D-galactopyranosyluronate)-(1→2)-(4-O-benzoyl-α-L-rhamnopyranosyl)-(1→4)-α/β D-galactopyranuronate (17).  相似文献   

19.
Abstract

Three sialyl-Lex ganglioside analogs containing carboxymethyl, sulfate, and phosphate groups in place of the sialic acid moiety, have been synthesized. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,3,4-tri-O-benzyl-α-L-fucopyranosyl)-(1→3)-O-(2-acetamido-6-O-benzyl-2-deoxy-β-d-glucopyranosyl) - (1→3) - 2, 4, 6-tri-O-benzyl-β-d-galactopyranoside (10) with methyl 2,4,6-tri-O-benzoyl-3-O-(methoxycarbonyl)methyl-1-thio-β-d-galactopyranoside (6) or methyl 2-O-benzoyl-4,6-O-benzylidene-3-O-levulinoyl-1-thio-β-d-galactopyranoside (9) using dimethyl-(methylthio)sulfonium triflate (DMTST) as a promoter, afforded the corresponding tetrasaccharide derivatives 11 and 19. Compounds 11 and 19 were converted into the α-trichloroacetimidates 14 and 23, via reductive removal of the benzyl and benzylidene groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) or 2-(tetradecyl)hexadecan-1-ol (24), gave the lipophilic derivatives 16 and 25. Compound 16 was transformed, via selective reduction of the azido group, condensation with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title compound 18 in good yield. Compound 25 was treated with hydrazine acetate to give compound 26, which in turn was transformed, via sulfation or phosphorylation, and O-deacylation, into the target compounds 28 and 31.  相似文献   

20.
Abstract

Stereoselective synthesis of α-D-glucosyl-branching polysaccharide by chemical and enzymic reactions was investigated. Ring-opening polymerization of 1,6-anhydro-3-O-benzoyl-2,4-di-O-benzyl-β-D-glucopyranose (1) with PF5 as catalyst at low temperature gave a highly stereoregular polymer, which was converted to 2,4-diO-benzyl-(1→6)-α-D-glucopyranan by debenzoylation with sodium methoxide. The polymer was glucosylated according to the glycosyl imidate method. Deprotection of the branched polysaccharide was carried out with sodium in liquid ammonia at -78 °C to give a (1→6)-α-D-glucopyranan having α-D-glucopyranosyl and β-D-glucopyranosyl branches. Only the β-D-glucopyranosyl branch of the polymer was completely removed by enzymatic hydrolysis by the use of cellulase to provide stereoregular (1→6)-α-D-glucopyranan having an α-D-glucopyranosyl branch at the C-3 position. Polymers were characterized by optical rotation, NMR spectroscopy, GPC, and X-ray diffractometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号