首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Dehydrative cyclization of the condensation product of 2, 3, 4, 5-tetra-O-acetyl-galactaryl chloride with anthranilic acid gave 1, 2, 3, 4-tetra-O-acetyl-1, 4-bis(4H-benzoxazin-4-one-2-yl)-galacto-tetritol. Its reaction with aniline in the presence of phosphorus trichloride afforded 1, 4-bis (3-phenylquinazolin-4-one-2-yl)-1, 2, 3, 4-tetra-O-acetyl-galacto-tetritol.  相似文献   

2.
Abstract

NMR and chemical studies have shown that α-halogenoalkyl-phosphines 1 and P-halogenoylids 2 exist as halogenotropic tautoineric systems. The position of the equilibrium depends on the used solvent, temperatures and substituents at the α-carbon atom. For example, the equilibrium 1 2 shifts towards the phosphine from 1 if the substituents at the α-carbon atom are electron-donating (R = H, Me, Pr, i-Pr). These compunds, existing preferably in the phosphine form, undergo typical reactions both for tervalent phosphorus compounds and P-halogenoylids. Tervalent phosphorus compounds, α-halogenoalkylphosphines 1 add sulfur and react with anhydrous HCl to convert into the dichlorophosphines -4. Like the P-halogenoylids, they add alcohols and phenols forming the phosphonium salts 5, 6, react with primary amines and aniline to yield the iminophosphonates 7 They also form the 2-halogenoalkylphosphonates 8 in the reaction with aldehydes.  相似文献   

3.
6-Alkylpyrano [3,2-c] quinolin-5(2H)-ones(11a-e) were obtained in excellent yields by simply refluxing propynyl and butymyl ethers (6) of 4-hydroxy-1-alkylquinolin-2H-ones (2) in chlorobenzene for 10h, 5-Prop-2-ynyloxy-2H-pyrano [3,2-c] quinoline (12) was also obtained from the thermal rearrangement of 2,4-bis prop-2-ynyloxyquinoline (4).  相似文献   

4.
Abstract

Selective acetolysis of methyl 2, 3, 4, 6-tetra-O-benzyl-α-D-manno-pyranoside (2) allows for easy preparation of 1-acetates of 2, 3,4, 6-tetra-O-benzyl (5), 6-O-acetyl-2, 3, 4, tri-O-benzyl-(6), 4, 6-di-O-acetyl-2,3-di-O-benzyl-(7), 3, 4, 6-tri-O-acetyl-2-O-benzyl-(8), and 2, 4, 6-tri-O-acetyl-3-O-benzyl-D-mannopyranoside (9). 8 and 9 formed are separated by preparative HPLC in 30-60g scale. The time course of previously described acetolyses of 3, 4, 6-tri-O-benzyl- 1, 2-O-(1-methoxyethyidene)-β-D-mannopyranose (3), and methyl 2, 3-dt-O-benzyl-4, 6-O-benzylldene-α-D-mannopyranoside (4) giving 9, 1, 2, 6-tri-O-acetyl-3, 4-di-O-benzyl-(10), and 1, 2-di-O-acetyl-3, 4, 6-tri-O-benzyl-(11) α-D-mannopyranose as well 7 have been studied.  相似文献   

5.
Abstract

Glycosylation of methyl 3-O-(2-acetamido-3, 6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (1), catalyzed by mercuric cyanide, afforded a trisaccharide derivative, which was not separated, but directly O-deacetylated to give methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-giucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (8). Hydrogenolysls of the benzyl groups of 8 then furnished the title trisaccharide (9). A similar pflyccsylation of methyl 3-O-(2-acetamido-3-O-acetyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl- β-D-galactopyranoside (obtained by acetylation of 4, followed by hydrolysis of the benzylidene acetal group) with bromide 1 gave a tribenzyl trisaccharide, which, on catalytic hydrogenolysls, furnished the isomeric trisaccharide (12). Methylation of 4 and 2 with methyl iodide-silver oxide in 1:1 dichloro-methane-N, N-dimethylformamide gave the 3-O- and 4-O-monomethyl ethers (13) and (15), respectively. Hydrogenolysis of the benzyl groups of 13 and 15 then provided the title monomethylated disaechartdes (15) and (16), respectively. The structures of trisacchacides 9 and 12, and disaccharides 14 and 16 were all established by 13C MMR spectroscopy.  相似文献   

6.
Abstract

Starting with methyl 2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (1), the isomeric methyl 2-amino-2-deoxy-α-D-glucopyranoside 3-, 4-, and 6-sulfates have each been prepared by sulfation of suitably blocked intermediates. Tritylation and acetylation of 1 followed by detritylation gave methyl 3,4-di-0-acetyl-2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (3), having a free 6-hydroxyl group. Base catalyzed 0–4→0–6 acetyl migration provided the corresponding 3,6 di-O-acetyl derivative (4) posessing a free 4-hydroxyl group. Preparation of methyl 4,6-0-benzylidene-2-(benzyloxycarbonyl)amino-2-deoxy-α-D-glucopyranoside (9) provided the intermediate bearing a free 3-hydroxyl group. 0-sulfation of 3, 4, and 9 was effected with the pyridine sulfur trioxide complex in dry pyridine.  相似文献   

7.
Abstract

Prolonged treatment of tetra-O-acetyl-1, 5-anhydro-hex-1-enitols (“tetra-O-acetyl-hydroxy-glycals”) 3 and 5 with BF3 in CH2Cl2 at RT lead to anomeric mixtures of the title compounds 2 and 4a, the α-anomer 4a dominating. Reaction of 5 gave the higher yields of 4a (71%) and 2 (12%), the results being accounted mechanistic grounds. The same reaction performed in an aromatic solvent, like toluene, gave rise to competing C-alkylation., The ortho and para-tolyl derivatives 6 and 7, also with enone structure, were isolated in a combined maximum yield of 40% from 5. β-Enone 2 was also prepared in moderate yield by thermolysis of β-d-glucopyranose pentaacetate (1). In this case no α-anomer 4a was detected.  相似文献   

8.
In a report on the reaction of 2-chloronitrobenzene (1) with diethanolamine (2), Meltsner et al 1 claim that the expected SNAr product, N-(2-nitrophenyl)diethanolamine (3), is not formed; rather that the products are 2,2′-dichloroazobenzene (4), 2-nitrophenol (5), 2-chloroaniline (6) and 4-(2-aminophenyl)morpholine (7). Similar products in which the nitro function is reduced are also reported2 for the corresponding reaction with ethanolamine. In this laboratory, in an attempted preparation of 2,2′-dichloroazobenzene (4) for reference purposes in photochemical studies on the antineoplastic agent 5-(3-azido-4-chlorophenyl)-6-ethyl-pyrimidin-2,4-diamine3, the expected SNAr product (3) was obtained along with other products.  相似文献   

9.
Nitrones 2a , 2b obtained from the aldehydes 1a , 1b , are used for the syntheses of the N-ethoxy iminium salts 4a and 4b . In the following procedure 4a and 4b react to several esters of phosphinic acids 6a - 6d .  相似文献   

10.
Abstract

Two optically active pseudo-hexopyranoses, pesudo-α-D-glucopyranose (1) and pseudo-β-L-altropyranose (2), were synthesized starting from L-arabinose. L-Arabinose was first converted to an acyclic aldehyde 9. The reaction of 9 with dimethyl malonate under basic conditions provided a tetra-hydroxylated cyclohexane-1,1-dicarboxylate 11 and a C-glycoside of β-L-arabinopyranose 12. From the compound 11, the desired two pseudo-sugars were synthesized by 1) thermal demethoxy-carbonylation, 2) LiAlH4, reduction, 3) hydroboration of the resulting 1-hydroxymethyl-l-cyclohexene 14 followed by hydrogen peroxide treatment, and 4) removal of the protecting groups.  相似文献   

11.
Abstract

The reaction of N-phenyliminoketenylidenetriphenylphosphorane [a] (1), with 2-benzylidene-1, 3-indandione (2), 1,2-diphenyl-3,4-pyrazolidenedione (3)and/or 5-benzylidene barbituric acid (4) has been investigated. When ylide 1 was allowed to react with compounds 2, 3 or 4 in THF at ambient temp. the corresponding new pyrano-phosphoranylidenes 5, 6 or 7 were obtained. The elemental microanalyses, IR, 1H NMR, 31P NMR and MS data agree with the structure of the cyclic iminophosphoranes by [4+2]-cycloaddition and exclude 4-membered ring structure by [2+2]-cycloaddition. When the Wittig reaction was carried on the pyrano-phosphoranes 5, 6 or 7 using p-nitrobenzaldehyde, the exocyclic olefins together with triphenylphosphine oxide were isolated.  相似文献   

12.
Abstract

N-[2-S-(2-Acetamido-2,3-dideoxy-D-glucopyranose-3-y1)-2-thio-D-lactoyl]-L-alanyl-D-isoglutamine, in which the oxygen atom at C-3 of N-acetylmuramoic acid moiety in N-acetylmuramoyl-L-alanyl-D-isoglutamine (MDP) has been replaced by sulfur, was synthesized from allyl 2-acetamido-2-deoxy-β-D-glucopyranoside (1).

Treatment with sodium acetate of the 3-O-mesylate, derived from 1 by 4,6-O-isopropylidenation and subsequent mesylation, gave allyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-allopyranoside (4). When treated with potassium thioacetate, the 3-O-mesylate, derived from 4, afforded allyl 2-acetamido-3-S-acetyl-2-deoxy-4,6-0-isopropylidence-β-D-glucopyranoside (6). S-Deacetylation of 6, condensation with 2-L-chloropropanoic acid, and subsequent esterification, gave the 3-s[D-1(methoxycarbonyl)ethyl]-3-thio-glucopyranoside derivative (7). Coupling of the acid, derived from 7, with the methyl ester of L-alanyl-D-isoglutamine, and subsequent hydrolysis, yielded the title compound.  相似文献   

13.
Abstract

Fully protected 1-thioglycopyranosyl esters of N-acylamino acids (5, 6, and 7) were prepared by condensation of methyl 2, 3, 4-tri-O-acetyl-1-thio-β-d–glucopyranuronate (1), 2, 3, 4-tri-O-acetyl-1-thio-l–arabinopyranose (2), and 2, 3, 4-tri-O-acetyl-1-thio-D-arabinopyranose (3) with pentachlorophenyl esters of N-acylamino acids in the presence of imidazole. The 13C NMR chemical shifts of the starting 1-thio sugars and the 1-thiol ester products are reported.  相似文献   

14.
Abstract

A scheme of asymmetric synthesis of C-glycosyl α-glycines is described. Reductive hydrolysis of 2-deoxy-3,5-di-O-p-toluoyl-β D-erythropentofuranose 1-cyanide (4) in the presence of N,N-diphenylethylenediamine gave the imidazolidine 5, which was converted to 2,5-anhydro-3-deoxy-4,6-di-O-p-toluoyl-β-D-allose (3)by acid hydrolysis. The aldehyde (3), chiralamine, benzoic acid and t-butyl isocyanide four component condensation afforded in good yield two diastereomeric adducts (6a and 6b), which were separated by column chromatography and deblocked to furnish 2-deoxy-β-D-erythropentofuranosyl R and S-glycines (1a) and (1b).  相似文献   

15.
Abstract

The syntheses of phospholes (7, [3+2]-cycloaddition), bicyclophosphaalkenes (17, [4+2]-cycloaddition), and phosphabenzenes (15, [4+2]-cycloaddition followed by an extrusion process) starting from the phosphaalkynes (4) are described. The 2–Dewar phosphabenzene 18, obtained from the cyclobutadiene 21 and 4 (R =tBu), is the starting material for the synthesis of the valency isomers 19, 20, 22, and 23.  相似文献   

16.
Abstract

The reactions of bromide, chloride, and iodide ions with 1,3,4, 6-tetra-O-acetyl-2-O-(trifluoromethylsulfonyl) -α-D-glucopyranose (2) and with 1, 3, 4, 6-tetra-O-acetyl-2-O-(trifluoromethylsulfonyl)-β-D-mannopyranose (3) gave good to excellent yields of the corresponding deoxyhalogeno sugars. In contrast, when the gluco triflate 2 and tetra-butylammonium fluoride were heated under reflux in benzene, only 5-(acetoxymethyl)-2-formylfuran (13) was formed. Reaction of the manno triflate 3 under similar conditions produced 1, 3,4, 6-tetra-O-acetyl-2-deoxy-2-fluoro-β-D-gluco-pyranose (17), 1. 3, 4. 6-tetra-O-acetyl-2-deoxy-β-D-erythro-hex-2-eno-pyranose (18), 4,6-di-O-acetyl-1, 5-anhydro-2-deoxy-D-erythro-hex-l-enitol-3-ulose (19), and 1, 2, 3, 4, 6-penta-O-acetyl-β-D-glucopyranose (20). The mechanisms of the reactions of The triflates 2 and 3 with fluoride ion are discussed.  相似文献   

17.
R. S. Mali  S. G. Tilve 《合成通讯》2013,43(13):2041-2047
A convenient, two-step synthesis of 2-vinylindoles is described from the easily accessible (E)-ethyl-α-allyl-2-nitrocinnamates. Ethylcinnamates (1a and 1b) on reaction with triethylphosphite provide ethyl-2-allylindole-3carboxylates (2a and 2b ) along with minor amounts of their N-ethoxyderivatives (4a and 4b). Alkaline hydrolysis of 2a and 2b provide (E)-2-vinylindoles 3a and 3b in 60 and 67% yield respectively.  相似文献   

18.
Abstract

Different reaction conditions were investigated for the preparation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (5). Compound 5 on reaction with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide afforded the 4-O-substituted 2-acetamido-2-deoxy-β-D-glucopyranosyl derivative which, on O-deacetylation, gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranoside (8). The trimethylsilyl (Me3Si) derivative of 8, on treatment with pyridineacetic anhydride-acetic acid for 2 days, gave the disaccharide derivative having an O-acetyl group selectively introduced at the primary position and Me3Si groups at the secondary positions. The latter groups were readily cleaved by treatment with aqueous acetic acid in methanol to afford benzyl 2-acetamido-4-O-(6-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside, which on isopropylidenation gave the desired, key intermediate benzyl 2-acetamido-4-O-(6-O-acetyl-3,4-O-isopropylidene-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (12). Reaction of 12 with 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide under catalysis by bromide ion afforded the trisaccharlde derivative from which the title trisaccharide was obtained by systematic removal of the protective groups. The structures of the final trisaccharide and of various intermediates were established by 1H and 13C NMR spectroscopy.  相似文献   

19.
Abstract

In order to elucidate further the relationship between the composition of the fatty acyl groups in the nonreducing-sugar subunit of bacterial lipid A and its biological activity, 3-O-[(3R)-3-(acyloxy)tetradecanoyl]-2-deoxy-2-[(3R)-3-hydroxytetradecanamido]-4-O-phosphono-D-glucose [GLA-63(R, R) and GLA-64(R, R)], and 3-O-[(3R)-3-(acyloxy)tetradecanoyl]-2-deoxy-4-O-phosphono-2-tetradecanamido-D-glucose [GLA-67(R), GLA-68(R) and GLA-69(R)] have been synthesized. Benzyl 2-[(3R)-3-(benzyloxymethoxy)tetradecanamido]-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (5) and benzyl 2-deoxy-4,6-O-isopropylidene-2-tetradecanamido-β-D-glucopyranoside (6) were each esterified with (3R)-3-dodecanoyloxytetradecanoic acid (1), (3R)-3-tetradecanoyloxytetradecanoic acid (2) or (3R)-3-hexadecanoyloxy-tetradecanoic acid (3), to give 7-11, which were then transformed, by the sequence of deisopropylidenation, 6-O-tritylation and 4-O-phosphorylation, into a series of desired compounds.  相似文献   

20.
Abstract

Fully acetylated 1-thio-β-D-glucopyranosyl esters of N-protected amino acids (4–13) were prepared in high yields by condensation of 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose (1) with a pentachlorophenyl esters of N-protected amino acids (2) in the presence of imidazole, or bN-protected amino acids (3) in the presence of DCC + imidazole. High tendency of the S-acyl aglycon group in 4–13 to undergo S → O and S → N migrations was demonstrated in reactions with several alcohols and amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号