首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the course of a study on the photochemical and thermal behaviour of β,γ-δ,ε-dienones1-4, (E)-retro-α-ionone (2a) and a series of methylated (3, 4) and desmethyl analogues (2b-2e) have been synthesized by a simple deconjugative isomerization of the corresponding conjugated dienones in strong alkaline solution. 3-Methyl- (3) and 3,3-dimethyl-retro-α-ionone (4) have been prepared by addition of methyl chloride to a strongly alkaline solution of β-ionone (1a).5  相似文献   

2.
A useful synthesis of 3-hydroxy-4-chromanone (6) is not currently available. Lead tetraacetate oxidation of 4-chromanone (4) yields the C(3) acetoxy derivative but this compound could not be deacetylated to 6.1 Recently Donnelly and Maloney reported2 that the Algar-Flynn-Oyamada reaction (H2O2/CH3OH/NaOH), which is commonly used for the conversion of o-hydroxychalcones (1) into 3-hydroxyflavanone (2) and 3-hydroxyflavones (3), does not yield 6 when applied to o-hydroxya-crylophenone 1 (R = H). The authors found that under less basic conditions using K2CO3 some 6 is formed but the major product is catechol. These observations clearly indicate the necessity of developing a method for making 6. The present note describes a staightforward way of preparing 3-hydroxy-4-chromanone (6) in good yield.  相似文献   

3.
In our synthetic work on the transformation of simple p-menthane monoterpenes, readily available from Brazilian essential oils, into biologically active sesquiterpene lactones, we have prepared the model lactone 4 from p-menth-8-ene 1.1 The key step in this sequence is a lead tetra-acetate (LTA) oxidative cyclisation2 of the 1,3 diol 2 into the tetrahydrofuran 3. The final product is the cis fused lactone 4, isolated as two epimers about the methyl group.  相似文献   

4.
Both the direct2 and the sensitized3,4 photolyses of (E)-β-ionol (2) have been studied in some detail. In a preliminary publication5 we have indicated that direct photolyses of (E)-β-ionol (2) with λ = 254 nm yields (Z)-retro-γ-ionol (3) as the primary product; upon further irradiation 3 is converted into the corresponding (E)-isomer (4) which rapidly yields the bicyclic alcohol 5. A quantitative study revealed that the photoconversion of (E)-β-ionol with λ = 254 nm to 3 is about 10 times faster than the conversion of 3 into (E)-retro-γ-ionol.6 This rate difference thus allows the photosynthesis of 3.  相似文献   

5.
For many years the synthesis of diterpene acids has attracted the attention of organic chemists. Kröniger and Wheeler1 reported that the condensation of the dimethylate 1a with methyl malonate gave the cis compound 2a which on heating with palladised charcoal was converted into the trans isomer 3a. Compound 3a is a promising intermediate in the synthesis of derivatives of both abietic and podocarpic acids, while 2a could be a starting material for the synthesis of cis fused diterpene acids. However, the route to 2a and 3a was inefficient; 1a was only available as the minor component of a mixture with its epimer 1b; and the yield for the stage 2a + 3a was poor.  相似文献   

6.
Abstract

β,γ-Unsaturated amides are versatile intermediates in the organic synthesis e.g. in the synthesis of various analogues of penicillins, cephalosporins, carbapenems, and 1) functionalized monocyclic β-lactam antibiotics. We have now developed a novel route to β,γ-unsaturated. amides 3 starting from di ethoxyphosphory l propionic acid (1). Dilithium derivative of the acid 1 reacts with a variety of carbonyl compounds to give lactons 2. Treatment of 2 with amines results in nucleophilic lacton ring opening with subsequent Horner-Emnons olefination to give 3 (R5=HI. Alkylation of the lithiated lacton 2 with alkyl halogens folloved by the ring opening-olefination sequence provides d-substituted α, -unsaturated amides 3 (R5=alkyl).  相似文献   

7.
In connection with our synthetic approach to pentacyclic triterpenes,1 we have required substantial amounts of 2,5,5-trimethyl-1,3-cyclohexanedione (methyldimedone, 2), which is available by methylation of dimedone (1).2 However, methylation may also afford the 2,2-dimethyl product 3, the methyl ether 4, and the C, O-dimethyl product 5.  相似文献   

8.
Several years ago a number of antihypertensive N-alkyl-N′-cyano-N″-pyridylguanidines was prepared by addition of cyanamide to N-alkyl-N′-pyridylcarbodiimides which were obtained from the respective thioureas and phosgene or triphenylphosphine/carbon tetrachloride1. Recently we have described some attractive synthetic methods for N-alkyl-N′-4-pyridylthioureas2, based on 4-pyridyldithiocarbamic acid (1) (Scheme 1). We now report on the synthesis of N-alkyl-N′-cyano-N″-4-pyridylguanidines (4) from (1) by two different routes which ultimately may pass through a common intermediate (3) (Scheme 1).  相似文献   

9.
Trichodiene (1), a sesquiterpene hydrocarbon, was isolated from the extract of mycelium of Trichothecium roseum. The structure of trichodiene (1) was elucidated by Nozoe and Machida in 1970 via degradation and spectroscopy.1 Trichodiene (1) has been shown to be the biogenetic precursor of the trichothecane family of sesquiterpenoids as characterized by the cytotoxic fungal metabolite (-)-trichodermin (2).2,3 The structure and absolute stereochemistry of (-)-trichodermin (2) were determined by X-ray diffraction and, therefore, the structure and absolute stereochemistry of trichodiene (1) are now firmly established.4 We wish to report a total synthesis of (±)-trichodiene (1) via previously reported lactone 3.5,6  相似文献   

10.
Recently some furanonaphthoquinones were isolated from Tabebuia species2,3,4. The structures la, lb2, and li4 were assigned to three of these compounds (those of la and lb being later confirmed by synthesis3,5,6). However, for the three other isolated compounds the spectroscopic data did not permit a decision to be made between the 2,3,4 - - - 4 isomeric pairs of structure lc and Id, le and lf 3, and lg and lh 4. Compounds la, lb, and le (or If), were tested in the KB cell culture assay and shown to be more active cytotoxic agents than lapachol2,3, the probable biogenetic precursor of all of them.  相似文献   

11.
Abstract

The crystal structure of the triethylammonium salts of hydroxyphosphoranes 1a and 2 was resolved by X Ray diffraction. The first one has a TBP geometry slightly deformed with the phosphorus atom at the center, and the second one is a polycylic dimer containing two TBP which present the same deformations. In both cases, the P-O? bond lengths are short and dioxaphospholane rings planar. These two particular properties can be related to the strong Bronsted acidity of compounds 1a and 2. Effectively, the pKa of hydroxyphosphoranes 1a, 1b and 2, determined by potentiometrical titration in DMF or DMSO solutions are characteristic of strong acids.  相似文献   

12.
In 1977 Tamaki1 et al have isolated and synthesized2 (Z)-7-nonadecen-ll-one (la) and (Z)-7-eicosen-l1-one (1b) which are active components of the female sex pheromones of the peach fruit moth Carposina niponensis Walsingham, a major economic pest of apple, peach and other fruits of Japan. We report in this communication a practical, convenient and stereospecific route to 1a and 1b.  相似文献   

13.
2′,3′-Dideoxy-2′-fluorokanamycin A (23) was prepared by condensation of 6-azido-4-0-benzoyl-2,3,6-trideoxy-2-fluoro-α-D-ribo-hexopyranosyl bromide (13) and a protected disaccharide (19). Methyl 4,6-0-benzylidene-3-deoxy-β-D-arabino-hexopyranoside (5) prepared from methyl 4,6-0-benzylidene-3-chloro-3-deoxy-β-D-allo-hexopyranoside (1) by oxidation with pyridinium chlorochromate followed by reduction with Na2 S2O4 was fluorinated with the DAST reagent to give methyl 4,6-O-benzylidene-2,3-dideoxy-2-fluoro-β-D-ribo-hexopyranoside (7). Successive treatment of 7 with NBS, NaN3 and SOBr2 gave 13. The structure of the final product (23) was determined by the 1H and 19F and shift-correlated 2D NMR spectra.  相似文献   

14.
Abstract

Recently we have reported the addition of trichloracetyl isocuyanate to glycals 1 1,2,3. The reaction led to the highly stereoselective formation of a mixture of unstable [2+2] and [4+2] cycloadducts 2 and 3. The isocyanate adds to the glycal moiety anti to the substituent at C-3. The addition of benzylamine to the reac6tion mixture led to N-deprotection of 2 and allowed us to isolate stable bicyclic β-lactams 4 1-3. We have shown also that 2 (a mixture of α-L-gluco and β-L-manno isomers) obtained from L-rhamnal 1 (R1[dbnd]Ac, R2[dbnd]CH3 under high pressure, when treated with methanol, underwent a rapid trans opening of the four-membered ring to give respective glycosides 5(β-L-gluco and α-L-manno isomers). On the other hand 3 (R1[dbnd]Ac, R2[dbnd]CH3) under the same conditions added a molecule of methanol to the C[dbnd]N double bond affording 6.  相似文献   

15.
Abstract

Glycosylation of methyl 3-O-(2-acetamido-3, 6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (2) with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (1), catalyzed by mercuric cyanide, afforded a trisaccharide derivative, which was not separated, but directly O-deacetylated to give methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-giucopyranosyl)-2,4,6-tri-O-benzyl-β-D-galactopyranoside (8). Hydrogenolysls of the benzyl groups of 8 then furnished the title trisaccharide (9). A similar pflyccsylation of methyl 3-O-(2-acetamido-3-O-acetyl-2-deoxy-β-D-glucopyranosyl)-2,4,6-tri-O-benzyl- β-D-galactopyranoside (obtained by acetylation of 4, followed by hydrolysis of the benzylidene acetal group) with bromide 1 gave a tribenzyl trisaccharide, which, on catalytic hydrogenolysls, furnished the isomeric trisaccharide (12). Methylation of 4 and 2 with methyl iodide-silver oxide in 1:1 dichloro-methane-N, N-dimethylformamide gave the 3-O- and 4-O-monomethyl ethers (13) and (15), respectively. Hydrogenolysis of the benzyl groups of 13 and 15 then provided the title monomethylated disaechartdes (15) and (16), respectively. The structures of trisacchacides 9 and 12, and disaccharides 14 and 16 were all established by 13C MMR spectroscopy.  相似文献   

16.
Trichodiene (1), a sesquiterpene hydrocarbon, was isolated and characterized by Nozoe and Machida in 1970.1 Trichodiene (1) has been shown to be the biogenetic precursor of the trichothecane family of sesquiterpenoids characterized by the cytotoxic fungal metabolite (–)-trichodermin (2).2,3 We recently reported a total synthesis of (±)-trichodiene (1) via lactone 3.4 Now, we wish to report another stereoselective total synthesis of (±)-trichodiene (1) via lactone 3 which is highly regioselective.  相似文献   

17.
Abstract

Aldol reaction of 1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-erythro-pentofuranos-3-ulose (1) with acetone in the presence of aqueous K2CO3 afforded 3-C-acetonyl-1,2-O-isopropylidene-5-O-tertbutyl-dimethylsilyl-α-D-ribofuranose(2). Similar reaction of 1,2:5, 6-di-o-isopropylidene- α-D-ribo-hexofuranos-3-ulose (3) afforded 3-C-acetonyl-1,2:5, 6-di-o-isopropylidene- α-D-allofuranose (4) and (1R, 3R, 7R, 8S, 10R)-perhydro-8-hydroxy-5,5,10-trimethyl-2,4,6,11,14-pentaoxatetracyclo[8,3,1,01,8,03,7] tetradecane. The stereochemistry of the new chiral centers were determined by 1H NOE experiments.  相似文献   

18.
Abstract

Different reaction conditions were investigated for the preparation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (5). Compound 5 on reaction with 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide afforded the 4-O-substituted 2-acetamido-2-deoxy-β-D-glucopyranosyl derivative which, on O-deacetylation, gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-β-D-galactopyranosyl-β-D-glucopyranoside (8). The trimethylsilyl (Me3Si) derivative of 8, on treatment with pyridineacetic anhydride-acetic acid for 2 days, gave the disaccharide derivative having an O-acetyl group selectively introduced at the primary position and Me3Si groups at the secondary positions. The latter groups were readily cleaved by treatment with aqueous acetic acid in methanol to afford benzyl 2-acetamido-4-O-(6-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside, which on isopropylidenation gave the desired, key intermediate benzyl 2-acetamido-4-O-(6-O-acetyl-3,4-O-isopropylidene-β-D-galactopyranosyl)-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (12). Reaction of 12 with 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide under catalysis by bromide ion afforded the trisaccharlde derivative from which the title trisaccharide was obtained by systematic removal of the protective groups. The structures of the final trisaccharide and of various intermediates were established by 1H and 13C NMR spectroscopy.  相似文献   

19.
Abstract

The syntheses of phospholes (7, [3+2]-cycloaddition), bicyclophosphaalkenes (17, [4+2]-cycloaddition), and phosphabenzenes (15, [4+2]-cycloaddition followed by an extrusion process) starting from the phosphaalkynes (4) are described. The 2–Dewar phosphabenzene 18, obtained from the cyclobutadiene 21 and 4 (R =tBu), is the starting material for the synthesis of the valency isomers 19, 20, 22, and 23.  相似文献   

20.
The recent publication by Matsumoto1 of a synthesis of Coleon U2(1) prompts us to present our own preparation of this poly-hydroxy diterpene as the tri-O-methyl (12a) and tetra-O-methyl ethers (12b). In a previous communication3 we outlined our approach which is aimed at several similar natural products such as Coleon C4 (1b), Lycoxanthol5 (2), etc. and differs considerably from that of the Japanese group. Formally at least, the two syntheses start with the same material, (+) ferruginol methyl ether 5a. In our case the latter was prepared by recorded methods from methyl O-methyl podocarpate after introducing the iso-propyl sidechain6 (→4), transforming the C.4 methoxycarbonyl residue to a methyl7 (→5a, ferruginol methyl ether) which was oxidised at the benzylic position of the B ring to give sugiol methyl ether 5b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号