首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anupama Parmar 《合成通讯》2013,43(14):2301-2308
Adsorption of Fe(ClO4)3(H2O)6 onto chromatographic‐grade silica gel in the presence of organic solvents (S=water, acetonitrile, or lower fatty acids) produces a supported reagent, Fe(ClO4)3(S)6/SiO2. This reagent has been found to be effective for the rapid organic functional group transformations such as dimerization of alkynes, aromatic hydrocarbons, selective oxidation of thiols to disulfides, and transannular reactions in 1,5‐cyclooctadienes on grinding using pestle and mortar in the solid state.  相似文献   

2.
Using the ligands N‐methylimidazole ( MeIm ), N‐ethylimidazole ( EtIm ), N‐propylimidazole ( PrIm ), and 1‐methyl‐1H‐1, 2, 4‐triazole ( MeTz ) three series with a total of 13 iron(II) complexes were isolated. The series comprise of the following complexes: (a) [Fe( MeIm )6](ClO4)2 ( 1 ), [Fe( EtIm )6](ClO4)2 ( 2 ), [Fe( PrIm )6](ClO4)2( 3 ), [Fe( MeTz )6](ClO4)2 ( 4 ), [Fe( MeIm )6](MeSO3)2 ( 5 ), [Fe( EtIm )6](MeSO3)2 ( 6 ), and [Fe( MeTz )6](BF4)2 ( 10 ); (b) [Fe( MeIm )4(MeSO3)2]( 7 ), [Fe( EtIm )4(MeSO3)2] ( 8 ), and [Fe( PrIm )4(MeSO3)2] ( 9 ); (c) [Fe( MeIm )4(NCS)2] ( 15 ), [Fe( EtIm )4(NCS)2] ( 16 ), and [Fe( MeTz )4(NCS)2] ( 17 ). Single crystal X‐ray diffraction studies were performed on 7 – 10 and 15 – 17 . Temperature dependent magnetic susceptibility measurements were performed on selective examples of all series, and confirmed them to be in the HS state over the range 6–300 K. DFT calculations were performed at BP86/def‐SV(P) and TPSSh/def2‐TZVPP level on all [Fe L 6]2+ complex cations and the neutral complexes 7 – 9 and 15 – 17 . Additionally the four homoleptic nickel(II) complexes [Ni L 6](ClO4)2 ( 11 : L = MeIm ; 12 : L = EtIm ; 13 : L = PrIm ; 14 : L = MeTz ) were synthesized and compounds 11 – 13 structurally characterized. UV/Vis/NIR spectroscopic measurements were carried out on all homoleptic iron(II) and nickel(II) complexes. The 10Dq values were determined to be in the range of 11547–11574 and 10471–10834 cm–1 for the iron(II) and nickel(II) complexes, respectively.  相似文献   

3.
Synthesis and spectral characteristics of [Fe(nia)3Cl3] and [Fe(nia)3(H2O)2](ClO4)3 are described. The effect of these compounds as well as of FeCl3·6H2O on photosynthetic electron transport in spinach chloroplasts was investigated using EPR spectroscopy. It was found that due to the interaction of these compounds with tyrosine radicals situated at the 161st position in D1 (TyrZ) and D2 (TyrD) proteins located at the donor side of photosystem (PS) II, electron transport between the photosynthetic centres PS II and PS I was interrupted. In addition, the treatment with [Fe(nia)3(H2O)2](ClO4)3 resulted in a release of Mn(II) from the oxygen evolving complex situated on the donor side of PS II. Moreover, the effect of the Fe(III) compounds studied on some production characteristics of hydroponically cultivated maize plants and on Fe accumulation in plant organs was investigated. In general, the production characteristic most inhibited by the presence of Fe(III) compounds was the leaf dry mass and [Fe(nia)3(H2O)2](ClO4)3 was found to be the most effective compound. The highest Fe amount was accumulated in the roots, and the leaves treated with Fe(III) compounds contained more Fe than the stems. The treatment with FeCl3·6H2O caused the most effective translocation of Fe into the shoots. Comparing the effect of nicotinamide complexes, [Fe(nia)3(H2O)2](ClO4)3 was found to facilitate the translocation of Fe into the shoots more effectively than [Fe(nia)3Cl3]. This could be connected with the different structure of these complexes. [Fe(nia)3(H2O)2](ClO4)3 has ionic structure and, in addition, coordinated H2O molecules can be easily substituted by other ligands. Dedicated to Professor Milan Melník on the occasion of his 70th birthday.  相似文献   

4.
We present a chemical discovery robot for the efficient and reliable discovery of supramolecular architectures through the exploration of a huge reaction space exceeding ten billion combinations. The system was designed to search for areas of reactivity found through autonomous selection of the reagent types, amounts, and reaction conditions aiming for combinations that are reactive. The process consists of two parts where reagents are mixed together, choosing from one type of aldehyde, one amine and one azide (from a possible family of two amines, two aldehydes and four azides) with different volumes, ratios, reaction times, and temperatures, whereby the reagents are passed through a copper coil reactor. Next, either cobalt or iron is added, again from a large number of possible quantities. The reactivity was determined by evaluating differences in pH, UV‐Vis, and mass spectra before and after the search was started. The algorithm was focused on the exploration of interesting regions, as defined by the outputs from the sensors, and this led to the discovery of a range of 1‐benzyl‐(1,2,3‐triazol‐4‐yl)‐N‐alkyl‐(2‐pyridinemethanimine) ligands and new complexes: [Fe(L1)2](ClO4)2 ( 1 ); [Fe(L2)2](ClO4)2 ( 2 ); [Co2(L3)2](ClO4)4 ( 3 ); [Fe2(L3)2](ClO4)4 ( 4 ), which were crystallised and their structure confirmed by single‐crystal X‐ray diffraction determination, as well as a range of new supramolecular clusters discovered in solution using high‐resolution mass spectrometry.  相似文献   

5.
The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12‐tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N′‐dimethyl‐2,11‐diaza[3.3](2,6)‐pyridinophane (L‐N4Me2) ligand, yielding complexes of the general formula [(L‐N4Me2)Ru(µ‐tape)M(L‐N4Me2)](ClO4)2(PF6)2 with M = Fe {[ 2 ](ClO4)2(PF6)2}, Co {[ 3 ](ClO4)2(PF6)2}, and Ni {[ 4 ](ClO4)2(PF6)2}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)‐ and platinum(II)‐dichloride [(bpy)2Ru(μ‐tape)PdCl2](PF6)2 {[ 5 ](PF6)2} and [(dmbpy)2Ru(μ‐tape)PtCl2](PF6)2 {[ 6 ](PF6)2}, respectively were also prepared. The molecular structures of the complex cations [ 2 ]4+ and [ 4 ]4+ were discussed on the basis of the X‐ray structures of [ 2 ](ClO4)4 · MeCN and [ 4 ](ClO4)4 · MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono‐ and homodinuclear ruthenium(II) complexes of the tape bridging ligand.  相似文献   

6.

Abstract  

Three copper(II), one zinc(II), and one ferrous(II) complexes having 3-bromo or 3,8-dibromo-1,10-phenanthroline ligand with different metal/ligand molar ratios, formulated as [Cu(3-bromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (1), [Cu(3,8-dibromo-phen)(ClO4)(C3H7NO)2(H2O)](ClO4) (2), [Cu(3,8-dibromo-phen)(ClO4)(H2O)3](ClO4)(H2O)3 (3), [Zn(3,8-dibromo-phen)2(H2O)2](ClO4)2(H2O)2 (4), and [Fe(3,8-dibromo-phen)3](ClO4)2(H2O)(CH4O)(C3H6O)2 (5) (phen = 1,10-phenanthroline), have been synthesized and characterized in this paper. X-ray single-crystal diffraction studies reveal the different crystallographic symmetry and packing fashions between neighboring phen rings in 1:1 Cu(II) complexes 13 due to the alteration of bromo substituent 1,10-phenanthroline ligands and coordinated or free solvent molecules. Additionally, in 1:2 Zn(II) and 1:3 Fe(II) complexes 4 and 5, continuous π–π stacking and alternating π–π and dimeric p–π stacking are found.  相似文献   

7.
A 1D double‐zigzag framework, {[Zn(paps)2(H2O)2](ClO4)2}n ( 1 ; paps=N,N′‐bis(pyridylcarbonyl)‐4,4′‐diaminodiphenyl thioether), was synthesized by the reaction of Zn(ClO4)2 with paps. However, a similar reaction, except that dry solvents were used, led to the formation of a novel 2D polyrotaxane framework, [Zn(paps)2(ClO4)2]n ( 2 ). This difference relies on the fact that water coordinates to the ZnII ion in 1 , but ClO4? ion coordination is found in 2 . Notably, the structures can be interconverted by heating and grinding in the presence of moisture, and such a structural transformation can also be proven experimentally by powder and single‐crystal X‐ray diffraction studies. The related N,N′‐bis‐ (pyridylcarbonyl)‐4,4′‐diaminodiphenyl ether (papo) and N,N′‐(methylenedi‐para‐phenylene)bispyridine‐4‐carboxamide (papc) ligands were reacted with ZnII ions as well. When a similar reaction was performed with dry solvents, except that papo was used instead of paps, the product mixture contained mononuclear [Zn(papo)(CH3OH)4](ClO4)2 ( 5 ) and the polyrotaxane [Zn(papo)2(ClO4)2]n ( 4 ). From the powder XRD data, grinding this mixture in the presence of moisture resulted in total conversion to the pure double‐zigzag {[Zn(papo)2(H2O)2](ClO4)2}n ( 3 ) immediately. Upon heating 3 , the polyrotaxane framework of 4 was recovered. The double‐zigzag {[Zn(papc)2(H2O)2](ClO4)2}n ( 6 ) and polyrotaxane [Zn(papc)2(ClO4)2]n ( 7 ) were synthesized in a similar reaction. Although upon heating the double‐zigzag 6 undergoes structural transformation to give the polyrotaxane 7 , grinding solid 7 in the presence of moisture does not lead to the formation of 6 . Significantly, the bright emissions for double‐zigzag frameworks of 1 and 3 and weak ones for polyrotaxane frameworks of 2 and 4 also show interesting mechanochromic luminescence.  相似文献   

8.
Zusammenfassung Bei der Extraktion von Pr und Yb mitTBP aus Nitrat-Perchlorat-Lösung (Ionenstärke 3,5m, konstante Konzentration des Extraktionsmittels) bilden sich in der organischen Phase-außer den einfachen Tri- und Hexasolvaten-auch gemischte Nitrat-Perchlorat-Solvate folgender Zusammensetzung:Ln(NO3)2(ClO4) · 3TBP;Ln(NO3)(ClO4)2 · 3TBP;Ln(NO3)-(ClO4)2 · 6TBP;Ln(NO3)2(ClO4) · 6TBP. Die Aktivitätskoeffizienten der extrahierten Salze bleiben bei konstanter Ionenstärke unverändert, unabhängig von der Änderung des Verhältnisses ihrer Anionen.
Extraction of rare earths with tributyl phosphate from a nitrate-perchlorate medium
The extraction of Pr and Yb withTBP from a nitrate-perchlorate medium at an ionic strength of 3.5m and constant concentration of the extraction agent has been investigated. It was found that in the organic phase, besides the simple tri-and hexa-solvates, the mixed nitrate-perchlorate solvates of the following compositions are also formed:Ln(NO3)2(ClO4) · 3TBP;Ln(NO3)(ClO4)2 · 3TBP;Ln(NO3) · (ClO4)2 · 6TBP;Ln(NO3)2(ClO4) · 6TBP. The activity coefficients of the extracted salts, at a constant ionic strength remain unchanged, irrespective of the change of ratio between their anions.


Mit 3 Abbildungen  相似文献   

9.
Summary Complexes (2 : 1) of diethyl benzoylphosphonate (debp) with 3d metal perchlorates were synthesized and characterized by means of i.r. and electronic spectral, magnetic susceptibility and conductance measurements. In new complexes of the types [M(debp)2(OClO3)(OH2)](ClO4) (M = Fe, Co, Zn) and [Fe(debp)2(OClO3)(OH2)](ClO4)2, both debp ligands function as bidentate chelating agents, coordinating through the P=O and C=O oxygens. In contrast, in the manganese(II) and nickel(II) complexes, which are of the [M(debp)2(OClO3)(OH2)2](ClO4) type, one debp acts as a bidentate chelating ligand, while the second debp is unidentate, coordinating only through the P=O oxygen. Hexacoordination in the new cationic complexes is completed by coordination of aqua and unidentate perchlorato ligands, which are in competition for sites in the inner coordination sphere of the central metal ion with the weak debp ligand. On the other hand, debp, owing to its bulkiness, and especially the presence of the benzoyl substituent, introduces sufficiently severe steric hindrance during coordination. As a result of this, the formation of [M(debp)3]n+ tris-chelate cationic complexes with the 3 d metal ions under study does not seem to be possible.  相似文献   

10.
Abstract

5′-deoxyadenosine (LH) complexes with divalent 3d metal perchlorates were prepared by refluxing mixtures of LH and salt in triethylorthoformate-ethylacetate. With one exception (M = Co), adducts of the types M(LH)2(ClO4)2.3EtOH (M = Mn, Fe, Ni, Zn) and Cu(LH)3(ClO4)2.EtOH were obtained. Ethanol is introduced to the system by hydrolysis of triethylorthoformate during the dehydration of the metal salts. Co(II) perchlorate yielded a complex involving both neutral LH and monoanionic L? ligands, i. e., Co2(LH)L2(ClO4)2.4EtOH. An analogous Cu(II) complex, Cu2(LH)L2(ClO4)2.EtOH.3H2O, was also obtained by refluxing substantially more dilute suspensions of LH and Cu salt, relative to the standard preparative method employed. The new complexes were characrerized as dimers or linear polymers, involving bridging bidentate N1,N7-bound LH ligands between adjacent metal ions and coordination number six. The new adducts also involve terminal N7-bound LH and EtOH ligands and ionic perchlorate, and the Co and Cu complexes a chelating N6,N7-bound L? (monodeprotonation of the exocyclic NH2 group) per metal ion and terminal -OClO3 and ROH (R = Et or H) ligands.  相似文献   

11.
The reaction of Cu(ClO4)2·6H2O, NaAsF6 and excess pyrazole yields hexakis­(pyrazole‐κN2)copper(II) bis­(hexa­fluoroarsenate), [Cu(C3H4N2)6](AsF6)2 or [Cu(pzH)6](AsF6)2 (pzH is pyrazole), (I). The analogous hexakis­(pyrazole‐κN2)copper(II) hexafluorophosphate perchlorate complex, [Cu(C3H4N2)6](PF6)1.29(ClO4)0.71 or [Cu(pzH)6](PF6)1.29(ClO4)0.71, (II), is obtained in a similar fashion, using KPF6 in place of NaAsF6. Both compounds contain the hitherto unknown [Cu(pzH)6]2+ complex cation, in which the copper(II) ion lies at the center of a regular octahedron of coordinated N atoms. The cation has crystallographically imposed symmetry. The X‐ray data indicate that the lack of the expected distortion can be accounted for by the presence of either static Jahn–Teller disorder or dynamic Jahn–Teller distortion.  相似文献   

12.
Initiation of polymerization of methyl methacrylate, styrene, and acrylonitrile with the redox system Fe(III)—thiourea has been examined. For the heterophase polymerization any of the ferric salts, such as FeCl3, Fe2(SO4)3, and Fe(ClO4)3 can be used as oxidant, but there is no polymerization in the homogeneous phase when FeCl3 is used as oxidant. It was also observed that Fe(ClO4)3 retards the radical polymerization of styrene, though this salt has hardly any effect on the radical polymerization of methyl methacrylate. Further, the reaction between Fe(ClO4)3 and thiourea was found to be kinetically of second order. The rate is largely influenced by the nature of the solvent. It is concluded that apart from the dielectric constant of the solvents, specific effects like complex formation of Fe(III) with solvents should have a marked influence on the rate of this reaction.  相似文献   

13.
The IR spectra (4000–4140 cm?1 ) of the twelve imidazole (Him) complexes [M(Him)6] (NO3)2 (M = Co, Ni, Zn); [M(Him)6](ClO4)2 (M = Mn, Fe, Co, Ni); [Zn(Him)s](ClO4)2; [Cu(Him)4X2] (X = NO3, ClO4); [Zn(Him)4(NO3)2]; [Zn(Him)4](ClO4)2 and their deuterated analogues are discussed. The ratio between the frequencies of corresponding bands in the deuterated and undeuterated species is used to assign the internal imidazole vibrations. The internal modes of the NO3? and ClO4? ions are discussed in relation to the known or proposed structures of the complexes. The metal-ligand vibrations are assigned on the grounds of the shifts which occur on imidazole deuteration and metal ion substitution.  相似文献   

14.
Mononuclear [Fe(H2LR)2]X2 (R = H, 2-Me, 5-Me, 2-Et-5-Me; X = ClO4, BF4) and dinuclear [Fe2(H2LR)3]X4 complexes containing imidazole-4-carbaldehyde azine (H2LH) and its derivatives prepared by condensation of 4-formylimidazole, 2-methyl- or 5-methyl-4-formylimidazole, or 2-ethyl-4-methyl-5-formylimidazole, with hydrazine in a 2:1 mole ratio in methanol, were prepared and their magnetostructural relationships were studied. In the mononuclear complexes, H2LR acts as an unsymmetrical tridentate ligand with two imidazole nitrogen atoms and one azine nitrogen atom, while in the dinuclear complexes, H2LR acts as a dinucleating ligand employing four nitrogen atoms to form a triple helicate structure. At room temperature, [Fe2(H2LH)3](ClO4)4 and [Fe2(H2L2-Me)3](ClO4)4 were in the high-spin (HS) and low-spin (LS) states, respectively. The results are in accordance with the ligand field strength of H2L2-Me with electron-donating methyl groups being stronger than H2LH, with the order of the ligand field strengths being H2L2-Me > H2LH. However, in the mononuclear [Fe(H2LH)2](ClO4)2 and [Fe(H2L2-Me)2](ClO4)2 complexes, a different order of ligand field strengths, H2LH > H2L2-Me, was observed because [Fe(H2LH)2](ClO4)2 was in the LS state while [Fe(H2L2-Me)2](ClO4)2 was in the HS state at room temperature. X-ray structural studies revealed that the interligand steric repulsion between a methyl group of an H2L2-Me ligand and the other ligand in [Fe(H2L2-Me)2](ClO4)2 is responsible for the observed change in the spin state. The same is true for [Fe(H2L2-Et-5-Me)2](ClO4)2, while [Fe(H2L5-Me)2](ClO4)2 does not involve such a steric congestion and stays in the LS state over the temperature range 5–300 K. Two kinds of crystals (polymorphs) were isolated for [Fe2(H2LH)3](BF4)4 and [Fe2(H2L2-Et-5-Me)3](ClO4)4, and they exhibited different magnetic behaviors.  相似文献   

15.
Three novel copper(II) complex [Cu2(bpa)(μ‐PhCO2)](ClO4)2 ( 1 ), [Cu2(bpa) (μ‐pyz)](ClO4)2 ( 2 ), and [Cu(Hbpa)](ClO4)2·2CH3CN ( 3 ) have been synthesized by the reaction of Hbpa with Cu(ClO4)2·6H2O in the presence and absence of exogenous ligands (where Hbpa = N, N'‐bis(picolinidene‐N‐oxide)‐2‐hydroxy‐1, 3‐diamino‐propane). Molecular structures of these compounds have been elucidated by single crystal X‐ray diffraction. 1 and 2 are both binuclear complexes in which two copper atoms are linked by the endogenous alkoxide oxygen and the exogenous benzoate and pyrazolate ligands, respectively. 3 consists of a one‐dimensional polymeric structure, in which Hbpa functions as a bridging mode.  相似文献   

16.
Summary Complexes of allopurinol (apH) with FeIII and several 3d metal(II) (e.g. Fe, Co, Ni and Cu) perchlorates were prepared. The solid complexes isolated included two monomeric hexacoordinated adducts of the type [Fe(apH)3-(OClO3) (OH2)2]ClO4 and [Fe(apH)3(OClO3)2(OH2)]ClO4, involving N(8)-bound neutral apH ligands, and polymeric Co, Ni or Cu complexes containing both neutral apH and monoanionic ap- ligands. The latter three complexes involved both N(8)-bound terminal apH and N(1), N(8)- or N(1), N(9)-bound bridging ap- ligands, and were of the following types: [(apH)2Cu(ap)] n (ClO4) n , tetrahedral; [(apH)(H2O)(OClO3)Co(ap)] n , pentacoordinated; and [(apH)2(H2O)(OClO3)Ni(ap)] n , hexacoordinated.Presented in part at the 203rd. American Chemical Society National Meeting; see Ref. 1.  相似文献   

17.
The chemistry of first row transition metal complexes obtained from the ligand dipyrido[3,2-f:2′,3′-h]-quinoxaline (dpq) have been reported. The reaction between Cu(ClO4)2 · 6H2O with dpq under different reaction conditions led to the isolation of three polymorphic copper(II) complexes [Cu(dpq)2(H2O)](ClO4)2 · H2O (2), [Cu(dpq)2(ClO4)](ClO4) (3) and [{Cu(dpq)2(H2O)}{Cu(dpq)2(ClO4)}](ClO4)3 (4). The bluish-green compound 2, obtained by reacting Cu(ClO4)2 · 6H2O with dpq in methanol, has a distorted trigonal bipyramidal structure with τ = 0.55. The reaction between Cu(ClO4)2 · 6H2O and dpq in dry acetonitrile produced the blue compound 3 in which the copper(II) centre has a distorted square planar geometry. When the condensation reaction between 1,10-phenanthroline-5,6-dione and 1,2-diaminoethane was carried out in the presence of Cu(ClO4)2 · 6H2O in methanol, the green copper(II) complex 4 was isolated along with 1. The structure determination of 4 has established the presence of two different complex cations in the asymmetric unit and they are considered as co-crystals. In the zinc(II) compound [Zn(dpq)2(ClO4)2] (5), the two perchlorates are unidentately coordinated to the metal centre, providing a distorted octahedral geometry. The quinoxaline ring in 5 is involved in intermolecular π–π interactions, leading to the generation of a sinusoidal chain. The proton NMR spectra, especially those of the paramagnetic complexes [Ni(dpq)3](ClO4)2 (6) and [Co(dpq)3](ClO4)2 (7), have been studied in detail. The electronic absorption spectra and the redox behaviour of the copper(I), copper(II), cobalt(II) and cobalt(III) complexes have been studied. The three copper(II) compounds 24 show identical absorption spectra and redox properties when measured in acetonitrile, although in nitromethane they show small but definite differences in their spectral and redox features.  相似文献   

18.
Two mixed‐valent disc‐like hepta‐nuclear compounds of [FeIIFeIII6(tea)6](ClO4)2 ( 1Fe , tea = N(CH2CH2O)33?) and [MnII3MnIII4(nmdea)6(N3)6]·CH3OH ( 2Mn , nmdea = CH3N(CH2CH2O)22?) have been synthesized by the reaction of Fe(ClO4)2·6H2O with triethanolamine (H3tea) for the former and reaction of Mn(ClO4)2·6H2O with diethanolamine (H2nmdea) and NaN3 for the later, respectively. 1Fe has the cationic cluster with a planar [FeIIFeIII6] core consisting of one central FeII and six rim FeIII atoms in hexagonal arrangement. The Fe ions are linked by the oxo‐bridges from the alcohol arms in the manner of edge‐sharing of their coordination octahedra. 2Mn is a neutral cluster with a [MnII3MnIII4] core possessing one central MnII atom surrounded by six rim Mn ions, two MnII and four MnIII. The structure is similar to 1Fe but involves six terminal azido ligands, each coordinate one rim Mn ion. 1Fe showed dominant antiferromagnetic interaction within the cluster and long‐range ordering at 2.7 K. The cluster probably has a ground state of low spin of S = 5/2 or 4/2. The long‐range ordering is weak ferromagnetic, showing small hysteresis with a remnant magnetization of 0.3 Nβ and a coercive field of 40 Oe. Moreover, the isofield of lines 1Fe are far from superposition, indicating the presence of significant zero–field splitting. Ferromagnetic interactions are dominant in 2Mn . An intermediate spin ground state 25/2 is observed at low field. In high field of 50 kOe, the energetically lowest state is given by the ms = 31/2 component of the S = 31/2 multiplet due to the Zeeman effect. Despite of the large ground state, no single‐molecule magnet behavior was found above 2 K.  相似文献   

19.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

20.
In this short review, we wish to present an overview of the applications of hydrated, ferric perchlorate, Fe(ClO4)3.XH2O as an available and inexpensive reagent amd catalyst in organic synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号