首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics and mechanism of the reaction of SIV (SO32?+HSO3?) with a ruthenium(VI) nitrido complex, [(L)RuVI(N)(OH2)]+ (RuVIN, L=N,N′‐bis(salicylidene)‐o‐cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3? and SO32? by RuVIN. A deuterium isotope effect of 4.7 is observed in the HSO3? pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N?S bond formation (partial N‐atom transfer) between RuVIN and HSO3? and H+ transfer from HSO3? to a H2O molecule.  相似文献   

2.
The asymmetric molybdenum(VI) dioxo complexes of the bis(phenolate) ligands 1,4‐bis(2‐hydroxybenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐methylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐dimethylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐3,5‐di‐tert‐butylbenzyl)‐1,4‐diazepane, 1,4‐bis(2‐hydroxy‐4‐flurobenzyl)‐1,4‐diazepane, and 1,4‐bis(2‐hydroxy‐4‐chlorobenzyl)‐1,4‐diazepane (H2(L1)–H2(L6), respectively) have been isolated and studied as functional models for molybdenum oxotransferase enzymes. These complexes have been characterized as asymmetric complexes of type [MoO2(L)] 1–6 by using NMR spectroscopy, mass spectrometry, elemental analysis, and electrochemical methods. The molecular structures of [MoO2(L)] 1–4 have been successfully determined by single‐crystal X‐ray diffraction analyses, which show them to exhibit a distorted octahedral coordination geometry around molybdenum(VI) in an asymmetrical cis‐β configuration. The Mo? Ooxo bond lengths differ only by ≈0.01 Å. Complexes 1 , 2 , 5 , and 6 exhibit two successive MoVI/MoV (E1/2, ?1.141 to ?1.848 V) and MoV/MoIV (E1/2, ?1.531 to ?2.114 V) redox processes. However, only the MoVI/MoV redox couple was observed for 3 and 4 , suggesting that the subsequent reduction of the molybdenum(V) species is difficult. Complexes 1 , 2 , 5 , and 6 elicit efficient catalytic oxygen‐atom transfer (OAT) from dimethylsulfoxide (DMSO) to PMe3 at 65 °C at a significantly faster rate than the symmetric molybdenum(VI) complexes of the analogous linear bis(phenolate) ligands known so far to exhibit OAT reactions at a higher temperature (130 °C). However, complexes 3 and 4 fail to perform the OAT reaction from DMSO to PMe3 at 65 °C. DFT/B3LYP calculations on the OAT mechanism reveal a strong trans effect.  相似文献   

3.
[MoVIO2(S2C2(CN)2)2]2− (┘1) and [MoIVO(S2C2(CN)2)2]2− (2) mimick oxidoreductase enzymatic activities of sulphite oxidase with biological electron donor, SO 3 2− , andin vitro electron acceptor, [Fe(CN)6]3−, demonstrating proton coupled electron transfer reaction in water and inhibition of the oxidation of (2) in the presence of KCN. The sulphite exidizing system is characterized by substrate saturation kinetics indicating the biological significance of the reactions  相似文献   

4.
Four new molybdenum complexes [MoVIO2(L1)(Him)] ( 1 ), [MoVIO2(L1)(3‐MepzH] ( 2 ), [MoVIO2(L2)(3‐MepzH)] ( 3 ), and [(MoVIO2)2(μ‐L3)(MeOH)2] ( 4 ) were synthesized and characterized by IR, NMR, ESI‐MS, and single‐crystal structure analysis [H2L1 = 2‐(salicylideneamino)‐2‐methyl‐1‐propanol, H2L2 = 2‐(3‐methoxysalicylideneamino)‐2‐methyl‐1‐propanol, H4L3 = 1, 7‐bis(salicylidene)dihydrazide malonic acid, Him = imidazole and 3‐MepzH = 3‐methylpyrazole]. In all four structures the molybdenum atom has a distorted octahedral coordination with the three meridional donor atoms from the Schiff base di‐ or tetraanion (L1, 2)2—/(L3)4— and one oxo group occupying the sites of the equatorial plane. The other oxo group and the azole or methanol molecule occupy the apical sites. In 1—3 two centrosymmetrically related molecules form a hydrogen‐bonded pair through the (azole)N‐H···O(alkoxo) interaction. Additional crystal packing appears to be controlled mostly by π stacking between the aromatic rings of the salicyl moiety. ESI‐MS investigations reveal that the integrity of complexes 1—4 is largely retained in methanol solution. At the same time evidence is provided that di‐ to tetranuclear oligomers of formula [{MoVIO2(L)}x] and [{MoVIO2(L)}x(3‐MepzH)] with L = L1, L2, x = 2, 3, 4 are present simultaneously with 2 and 3 in methanol solution, respectively the tetranuclear species [{(MoVIO2)2(L3)}2] with 4 .  相似文献   

5.
Abstract

Model complexes [MoVIO2(S2C2Me2)SMe]? (A, derived from the X-ray crystal structure of native sulfite oxidase (SO)) and [MoVIO2(mnt)2]2? (B, coordination mode similar to the active site of selenate reductase (SeR)) were computed at the COSMO-B3LYP/SDDp//B3LYP/Lanl2DZ(p) energy level of Density Functional Theory in order to study their behavior in oxidation of selenite (SeIV) and sulfite (SIV) to selenate (SeVI) and sulfate (SVI), respectively. For the oxidation of sulfite, computational model A, which resembles the SO active site, is clearly the best choice (lowest barrier, minor exothermicity). For the reduction of selenate, a smaller activation is computed for model A; however, the reaction is less exothermic with model B, which resembles the SeR active site.  相似文献   

6.
New mixed valent molybdenum monophosphates AMo3P2O14 have been synthesized for A = Ag, Rb, Na, Sr. The single crystal X-ray diffraction study of two of them (A = Ag, Sr) shows that they belong to the layer structure type KMo3P2O14. Their structure consists of [Mo3P2O14] layers involving MoO6 octahedra and MoO5 bipyramids, interleaved with A cations forming bicapped trigonal prisms AO8. Bond valence calculations show a localisation of the MoV and MoVI species according to the formula A1MoVoct1MoVIoct2MoVIbipyP2O14 for A = Ag, Na and SrMoVoct1MoVoct2MoVIbipyP2O14. A comparison between the different MoV? MoVI phosphates is made.  相似文献   

7.
Nitrate is a pervasive aquatic contaminant of global environmental concern. In nature, the most effective nitrate reduction reaction (NRR) is catalyzed by nitrate reductase enzymes at neutral pH, using a highly‐conserved Mo center ligated mainly by oxo and thiolate groups. Mo‐based NRR catalysts mostly function in organic solvents with a low water stability. Recently, an oxo‐containing molybdenum sulfide nanoparticle that serves as an NRR catalyst at neutral pH was first reported. Herein, in a nanoparticle‐catalyzed NRR system a pentavalent MoV(=O)S4 species, an enzyme mimetic, served as an active intermediate for the NRR. Potentiometric titration analysis revealed that a redox synergy among MoV?S, S radicals, and MoV(=O)S4 likely play a key role in stabilizing MoV(=O)S4, showing the importance of secondary interactions in facilitating NRR. The first identification and characterization of an oxo‐ and thiolate‐ligated Mo intermediates pave the way to the molecular design of efficient enzyme mimetic NRR catalysts in aqueous solution.  相似文献   

8.
By the reaction of urea or thiourea, acetylacetone and hydrogen halide (HF, HBr or HI), we have obtained seven new 4,6‐dimethyl‐2‐pyrimido(thio)nium salts, which were characterized by single‐crystal X‐ray diffraction, namely, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium bifluoride, C6H9N2O+·HF2? or (dmpH)F2H, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium bromide, C6H9N2O+·Br? or (dmpH)Br, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium iodide, C6H9N2O+·I? or (dmpH)I, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium iodide–urea (1/1), C6H9N2O+·I?·CH4N2O or (dmpH)I·ur, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium bifluoride–thiourea (1/1), C6H9N2S+·HF2?·CH4N2S or (dmptH)F2H·tu, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium bromide, C6H9N2S+·Br? or (dmptH)Br, and 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium iodide, C6H9N2S+·I? or (dmptH)I. Three HCl derivatives were described previously in the literature, namely, 4,6‐dimethyl‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium chloride, (dmpH)Cl, 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium chloride monohydrate, (dmptH)Cl·H2O, and 4,6‐dimethyl‐2‐sulfanylidene‐2,3‐dihydropyrimidin‐1‐ium chloride–thiourea (1/1), (dmptH)Cl·tu. Structural analysis shows that in 9 out of 10 of these compounds, the ions form one‐dimensional chains or ribbons stabilized by hydrogen bonds. Only in one compound are parallel planes present. In all the structures, there are charge‐assisted N+—H…X? hydrogen bonds, as well as weaker CAr+—H…X? and π+X? interactions. The structures can be divided into five types according to their hydrogen‐bond patterns. All the compounds undergo thermal decomposition at relatively high temperatures (150–300 °C) without melting. Four oxopyrimidinium salts containing a π+X?…π+ sandwich‐like structural motif exhibit luminescent properties.  相似文献   

9.
Dithiolylium Chlorooxomolybdates(V): Synthesis and Crystal Structure of (C3Cl3S2)[MoOCl4] and (C3Cl3S2)[Mo2O2Cl7] The reaction of 3, 4, 5‐Trichlor‐1, 2‐dithiolylium chloride with MoOCl3 in dichlormethane under solvothermal conditions at 65 °C simultaneously yields the green tetrachlorooxomolybdate(V) (C3Cl3S2)[MoOCl4] and the yellow‐brown heptachlorodioxodimolybdate(V) (C3Cl3S2)[Mo2O2Cl7]. The crystal structures of both compounds contain nearly planar (C3Cl3S2)+ ions with a S—S bond length of 203 pm. The discrete [MoOCl4] ion in the structure of (C3Cl3S2)[MoOCl4] has the shape of a square pyramid with the oxygen atom at the apex. The molybdenum atom is displaced by 58 pm from the basal plane towards the oxygen atom. The [Mo2O2Cl7] ion in the structure of (C3Cl3S2)[Mo2O2Cl7] has the form of a face‐sharing double octahedron. It is formally composed of a [MoOCl4] ion and a MoOCl3 molecule connected by one symmetrical and two unsymmetrical chloro bridges. The molybdenum atoms placed in the centers of such connected octahedra are 357 pm apart, indicating no Mo—Mo bond.  相似文献   

10.
Two polyoxometalate-based inorganic metal-organic hybrid supramolecular complexes [Cu(2,2′-bpy)2]2[VIV 2MoV 5MoVI 7O38(PO4)] (1) (2,2′-bpy?=?2,2′-bipyridine) and [Cu(2,2′-bpy)2]2[MoVMoVI 11O36(PO4)]?·?3H2O (2), have been hydrothermally prepared and structurally characterized by single-crystal X-ray diffraction. Both complexes are constructed from polyoxoanions (the bivanadyl capped α-Keggin polymolybdate anion [VIV 2MoV 5MoVI 7O38(PO4)]4? for 1 and the reduced 12-molybdophosphate anion [MoVMoVI 11O36(PO4)]4? for 2) and copper(II) complex cations [Cu(2,2′-bpy)2]2+, forming two-dimensional (2D) layer network structures, in which the polyoxoanion and the complex fragment cation connect with each other through Cu?···?Opolyoxoanion short contact weak interactions, which mediate ferromagnetic interaction.  相似文献   

11.
The heterogeneous reduction of nitrobenzene by thiophenol catalyzed by the dianionic bis(2‐sulfanyl‐2,2‐diphenylethanoxycarbonyl) dioxomolybdate(VI) complex, [MoVIO2(O2CC(S)(C6H5)2)2]2−, intercalated into a Zn(II)–Al(III) layered double hydroxide host [Zn3−xAlx(OH)6]x+, has been investigated under anaerobic conditions. Aniline was found to be the only product formed through a reaction consuming six moles of thiophenol for each mol of aniline produced. The kinetics of the system have been analyzed in detail. In excess of thiophenol, all reactions follow first‐order kinetics (ln([PhNO2]/[PhNO2]0) = −kappt) with the apparent rate constant kapp being a complex function of both initial nitrobenzene and thiophenol concentrations, as well as linearly dependent on the amount of solid catalyst used. A mechanism for this catalytic reaction consistent with the kinetic experiments as well as the observed properties of the intercalated molybdenum complex has thiophenol inducing the initial coupled proton–electron transfer steps to form an intercalated MoIV species, which is oxidized back to the parent MoVI complex by nitrobenzene via a two‐electron oxygen atom transfer reaction that yields nitrosobenzene. This mechanism is widespread in enzymatic catalysis and in model chemical reactions. The intermediate nitrosobenzene thus formed is reduced directly by excess thiophenol to aniline. The values of rate coefficients indicate that reduction of nitrobenzene proceeds much faster than proton‐assisted oxidation of thiophenol. This may account for the observation that the presence of protonic amberlite IR‐120(H) increases considerably the rate of the overall reaction catalyzed. Activation parameters in excess of the protonic resin and PhSH were ΔH = 80 kJ mol−1 and ΔS = −70 J mol−1 K−1. The large negative activation entropy is consistent with an associative transition state. The present system is characterized by a well‐defined catalytic cycle with multiple‐turnovers reductions of nitrobenzene to aniline without appreciable deactivation. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 212–224, 2001  相似文献   

12.
A novel hybrid material, (CeIII‐MoVI)Ox/aniline, with rod‐like morphology is synthesized through a wet chemical method using Mo3O10(C6H5NH3)2.2H2O nanowires as precursor. The synthesized materials are characterized by XRD, XPS, SEM, TEM, FTIR, Raman, UV–Vis, TGA, and elemental analysis. Also, their catalytic activities as a hybrid catalyst are tested in the selective oxidation of sulfides using hydrogen peroxide as a green oxidant. The proposed novel hybrid catalyst shows an excellent performance under green conditions at mild temperature. Furthermore, the scalability of the oxidation reaction is shown by making multi‐gram quantities at optimized conditions.  相似文献   

13.
Polychalcogenoanions of the Transition Metals. IV. Novel Redox Condensation Reactions of MoO2S22? in H2O and Preparation of Di-μ-sulfido Complexes of Mov MoVIO2S22? polymerizes after protonation in aqueous solution under physiological conditions forming polynuclear complexes with η-S22? ligands (for example [Mo2vO2S2(S2)2]2?). From the solution other di-μ-sulfido Mov complexes as for example [Mo2O2S2(Et2dtc)2] can be easily obtained.  相似文献   

14.
Density functional theory is used to study the electronic structures and properties of Lindqvist‐type polyoxometalates‐supported organometallic compounds [LM'M5O18]n– (L = [C2B9H11]2– (Cb), [C5H5] (Cp); M' = TiIV, MoVI, WVI; M = MoVI, WVI). [(Cb)M'M5O18]n– are a series of novel compounds designed in this work, based on related experiment. The calculated results reveal that the Cb ligand is able to form a σ, 2π triple bond with M', which is similar to the bond character in [(Cp)M'M5O18]n–. However, comparing with the protonation, electronic spectra and redox properties of [(Cp)M'M5O18]n– and [M'M5O19]n–, [(Cb)M'M5O18]n– species show the advantageous electronic properties owning to the superior electron donating ability of the Cb ligand. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Reactions of WVI and MoV chlorides with azoxybenzene yield ionic species of WVI and MoVI oxychlorides in which the cation is a protonated azobenzene. The reaction between MoCl5 or MoOCl4 and azoxybenzene gives, after extraction with methylene chloride—ethanol mixture, the complex [trans-MoOCl4(OC2H5)]? [C12H10N2H]+. In contrast, WOCl4 reacts with azoxybenzene to give a stable non-ionic adduct in which the organic moiety is coordinated through its oxygen atom trans to the WO bond. Several complexes of substituted azoxybenzene having similar structures are described.  相似文献   

16.
The title compound, (S)‐(+)‐4‐[5‐(2‐oxo‐4,5‐di­hydro­imidazol‐1‐yl­sulfonyl)­indolin‐1‐yl­carbonyl]­anilinium chloride (S)‐(+)‐1‐[1‐(4‐amino­benzoyl)­indoline‐5‐sulfonyl]‐4‐phenyl‐4,5‐di­hydro­imidazol‐2‐one, C24H23N4O4S+·Cl?·C24H22N4O4S, crystallizes in space group C2 from a CH3OH/CH2Cl2 solution. In the crystal structure, there are two different conformers with their terminal C6 aromatic rings mutually oriented at angles of 67.69 (14) and 61.16 (15)°. The distances of the terminal N atoms (of the two conformers) from the chloride ion are 3.110 (4) and 3.502 (4) Å. There are eight distinct hydrogen bonds, i.e. four N—H?Cl, three N—H?O and one N—H?N, with one N—H group involved in a bifurcated hydrogen bond with two acceptors sharing the H atom. C—H?O contacts assist in the overall hydrogen‐bonding process.  相似文献   

17.
High‐valent iron‐oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)FeIII(OH) porphyrin ([meso‐tetrakis(2,4,6‐trimethyl‐3‐sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)FeIII(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)FeIV?O(OH) point to the overall associative nature of the process. A pH‐dependence study on the formation of (TMPS)FeIV?O(OH) revealed a very high reactivity of OOH? toward (TMPS)FeIII(OH) in comparison to H2O2. The influence of N‐methylimidazole (N‐MeIm) ligation on both the formation of iron(IV)‐oxo species and their oxidising properties in the reactions with 4‐methoxybenzyl alcohol or 4‐methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)FeIII(H2O)(N‐MeIm) is highly reactive toward H2O2 to form the iron(IV)‐oxo species, (TMPS)FeIV?O(N‐MeIm). The latter species can also be formed in the reaction of (TMPS)FeIII(N‐MeIm)2 with H2O2 or in the direct reaction of (TMPS)FeIV?O(OH) with N‐MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)FeIV?O(OH) and (TMPS)FeIV?O(N‐MeIm) do not display a pronounced effect of the N‐MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH? substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH? or N‐MeIm) in the trans position to the oxo group in the iron(IV)‐oxo species does not significantly affect the activation barriers calculated for C?H dehydrogenation of the selected organic substrates.  相似文献   

18.
Visible‐light‐responsive hierarchical Co9S8/ZnIn2S4 tubular heterostructures are fabricated by growing 2D ZnIn2S4 nanosheets on 1D hollow Co9S8 nanotubes. This design combines two photoresponsive sulfide semiconductors in a stable heterojunction with a hierarchical hollow tubular structure, improving visible‐light absorption, yielding a large surface area, exposing sufficient catalytically active sites, and promoting the separation and migration of photogenerated charges. The hierarchical nanotubes exhibit excellent photocatalytic H2 evolution and CrVI reduction efficiency. Under visible‐light illumination, the optimized Co9S8/ZnIn2S4 heterostructure provides a remarkable H2 generation rate of 9039 μmol h?1 g?1 without the use of any co‐catalysts and CrVI is completely reduced in 45 min. The Co9S8/ZnIn2S4 heterostructure is stable after multiple photocatalytic cycles.  相似文献   

19.
The reaction of [RuIII(edta)(SCN)]2? (edta4? = ethylenediaminetetraacetate; SCN? = thiocyanate ion) with the peroxomonosulfate ion (HSO5?) has been studied by using stopped‐flow and rapid scan spectrophotometry as a function of [RuIII(edta)], [HSO5?], and temperature (15–30ºC) at constant pH 6.2 (phosphate buffer). Spectral analyses and kinetic data are suggestive of a pathway in which HSO5? effects the oxidation of the coordinated SCN? by its direct attack at the S‐atom (of SCN?) coordinated to the RuIII(edta). The high negative value of entropy of activation (ΔS = ?90 ± 6 J mol?1 deg?1) is consistent with the values reported for the oxygen atom transfer process involving heterolytic cleavage of the O‐O bond in HSO5?. Formation of SO42?, SO32?, and OCN? was identified as oxidation products in ESI‐MS experiments. A detailed mechanism in agreement with the spectral and kinetic data is presented.  相似文献   

20.
Addition of an anionic donor to an MnV(O) porphyrinoid complex causes a dramatic increase in 2‐electron oxygen‐atom‐transfer (OAT) chemistry. The 6‐coordinate [MnV(O)(TBP8Cz)(CN)]? was generated from addition of Bu4N+CN? to the 5‐coordinate MnV(O) precursor. The cyanide‐ligated complex was characterized for the first time by Mn K‐edge X‐ray absorption spectroscopy (XAS) and gives Mn?O=1.53 Å, Mn?CN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN? complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e?‐reduced MnIII(CN)? complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000‐fold versus the same reaction for the parent 5‐coordinate complex. An Eyring analysis gives ΔH=14 kcal mol?1, ΔS=?10 cal mol?1 K?1. Computational studies fully support the structures, spin states, and relative reactivity of the 5‐ and 6‐coordinate MnV(O) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号