首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction of racemic α‐keto β‐lactams 5a – 5c with the commercially available chiral compound trans‐4‐hydroxy‐L ‐proline ( 6 ) in the presence of a catalytic amount of Bi(NO3)3?5 H2O in EtOH gave a diastereoisomer mixture of β‐lactams with a pyrrole ring at C(3) ( 7 to 12 ). This is the first enantioselective synthesis of optically active β‐lactams (=azetidin‐2‐ones) that possess a pyrrolyl residue at C(3), in a single step.  相似文献   

2.
The treatment of a β3‐amino acid methyl ester with 2.2 equiv. of lithium diisopropylamide (LDA), followed by reaction with 5 equiv. of N‐fluorobenzenesulfonimide (NFSI) at ?78° for 2.5 h and then 2 h at 0°, gives syn‐fluorination with high diastereoisomeric excess (de). The de and yield in these reactions are somewhat influenced by both the size of the amino acid side chain and the nature of the amine protecting group. In particular, fluorination of N‐Boc‐protected β3‐homophenylalanine, β3‐homoleucine, β3‐homovaline, and β3‐homoalanine methyl esters, 5 and 9 – 11 , respectively, all proceeded with high de (>86% of the syn‐isomer). However, fluorination of N‐Boc‐protected β3‐homophenylglycine methyl ester ( 16 ) occurred with a significantly reduced de. The use of a Cbz or Bz amine‐protecting group (see 3 and 15 ) did not improve the de of fluorination. However, an N‐Ac protecting group (see 17 ) gave a reduced de of 26%. Thus, a large N‐protecting group should be employed in order to maximize selectivity for the syn‐isomer in these fluorination reactions.  相似文献   

3.
A β-(1→)6)-branched β-(1→)3)-linked glucohexaose (1) and its lauryl glycoside (2), present in many biologically active polysaccharides from traditional herbal medicines such as Ganoderma lucidum, Schizophyllum commune and Lentinus edodes, were highly efficiently synthesized. Coupling of 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl- (1--)3)-2-O-benzoyl-4,6-O-benzylidene-a-D-glucopyranosyl trichloroacetimidate (7) with 3,6-branched acceptors 8 and 12 gave β-(1→)3)-linked pentasaccharides (9) and (13), then via simple chemical transformation 4',6'-OH pentasaccharide acceptors 10 and 14 were obtained. Regio- and stereoselective coupling of 3 with 10 and 14 gave β-(1→)3)-linked hexasaccharides (11) and (15) as the major products. Deprotection of 11 and 15 provided the target sugar 1 and 2. Thus, a new method for the preparation of this kind of compounds was developed.  相似文献   

4.
Bismuth(III) chloride was found to be an efficient catalyst for the transesterification of a variety of β‐keto esters with a wide range of alcohols to afford transesterified products in good to high yields in short reaction times (see Table).  相似文献   

5.
6.
A simple and efficient synthesis of functionalized β‐chlorohydrins is described from the regio‐ and stereoselective reaction of α‐epoxyketones with AlCl3 in acetonitrile at room temperature.  相似文献   

7.
8.
9.
10.
11.
A method for catalytic regio‐ and enantioselective synthesis of trifluoromethyl‐substituted and aryl‐, heteroaryl‐, alkenyl‐, and alkynyl‐substituted homoallylic α‐tertiary NH2‐amines is introduced. Easy‐to‐synthesize and robust N‐silyl ketimines are converted to NH‐ketimines in situ, which then react with a Z‐allyl boronate. Transformations are promoted by a readily accessible l ‐threonine‐derived aminophenol‐based boryl catalyst, affording the desired products in up to 91 % yield, >98:2 α:γ selectivity, >98:2 Z:E selectivity, and >99:1 enantiomeric ratio. A commercially available aminophenol may be used, and allyl boronates, which may contain an alkyl‐, a chloro‐, or a bromo‐substituted Z‐alkene, can either be purchased or prepared by catalytic stereoretentive cross‐metathesis. What is more, Z‐trisubstituted allyl boronates may be used. Various chemo‐, regio‐, and diastereoselective transformations of the α‐tertiary homoallylic NH2‐amine products highlight the utility of the approach; this includes diastereo‐ and regioselective epoxide formation/trichloroacetic acid cleavage to generate differentiated diol derivatives.  相似文献   

12.
The first examples of neutral and cationic bismuth complexes bearing β‐ketoiminato ligands were isolated by employing salt metathesis route. BiCl3 reacts with [O=C(Me)]CH[C(Me)N(K)Ar] ( 1 ) resulting in a homoleptic β‐ketoiminato bismuth complex Bi[{O=C(Me)}CH{C(Me)NAr}]3 ( 2 ). The reaction between BiCl3 and [(CH2)2{N(K)C(Me)CHC(Me)=O}2] ( 3 ) leads to the formation of a cationic bismuth complex [Bi{(CH2)2(NC(Me)CHC(Me)=O)2}]4[Bi2Cl10] ( 4 ).  相似文献   

13.
The efficient and highly stereoselective syntheses of a variety of (Z)‐configured, substituted α‐(hydroxymethyl) ‐ β‐iodo‐acrylates from prop‐2‐ynoate and various aldehydes was achieved. The synthetic protocol involves a simple one‐pot coupling reaction under mild conditions, promoted by MgI2, which serves both as a Lewis acid and iodine source for a Baylis? Hillman‐type reaction. All adducts were generated in good‐to‐excellent yields, the (Z)‐isomers being formed in high selectivity (>98%). The conversion of methyl prop‐2‐ynoate into an active ‘β‐iodo allenolate’ intermediate, which then nucleophilically attacks an aldehyde, is proposed as a plausible reaction mechanism.  相似文献   

14.
Functionalized 5‐(arylselanyl)‐2‐(arylsulfanyl)benzoates were prepared by [3+3] cyclocondensation of 3‐(arylsulfanyl)‐1‐(silyloxy)buta‐1,3‐dienes with 2‐(arylselanyl)‐3‐(silyloxy)‐alk‐2‐en‐1‐ones.  相似文献   

15.
16.
17.
18.
Chiral α‐amino ketones are excellent nucleophiles for stereoselective palladium‐catalyzed allylic alkylations. Both chiral as well as achiral allylic substrates can be applied, while the stereochemical outcome of the reaction is controlled by the chiral ketone enolate. The substituted amino ketones formed can be reduced stereoselectively, and up to five consecutive stereogenic centers can be obtained. This approach can be used for the synthesis of highly substituted piperidine derivatives.  相似文献   

19.
20.
A microwave‐assisted glycosylation method was developed for efficient synthesis of oligosaccharides. Di‐functional AB monomers, 2,3,4‐tri‐O‐acetyl‐α‐d ‐galactopyranosyl bromide ( 3a ) and 2,3,4‐tri‐O‐acetyl‐α‐d ‐glucopyranosyl bromide ( 3b ) were designed and synthesized as weakly reactive monomers to avoid unwanted glycosylation or degradation during preparation and storage. The glycosylations of these monomers gave low conversions and low molecular weight oligosaccharides at rt, reflux, and under low microwave energy irradiation. However, the glycosylation became very effective when high microwave energy was applied, giving 100% conversion and producing oligosaccharides with Mn = 4.76 kDa for 3a and Mn = 4.05 kDa for 3b. The acetylated oligosaccharides were further subjected to deprotection for structural analysis, which indicated the oligosaccharides contain predominantly linear β‐(1,6)‐glycosyl linkages. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3693–3699  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号