首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have studied the validity of the double‐probe method in recombining plasmas. Electron temperature (Te) measured with a double probe was quantitatively evaluated by taking into account the influences of plasma potential fluctuation, plasma resistivity, and electron density fluctuation on the current–voltage characteristics. Differential potential fluctuation and plasma resistivity between two electrodes have a minor effect on Te especially when the inter‐distance is small (typically 1 mm). Scattering of measured Te due to the density fluctuation was sufficiently suppressed by making the data acquisition time long (typically 4 s) and taking the average. There is a good agreement between Te measured with the optimized double‐probe method and that with laser Thomson scattering diagnostics.  相似文献   

2.
In order to find the causes of the strong anomaly of current‐voltage characteristics of Langmuir probe observed in detached recombining plasmas in a linear divertor plasma simulator, NAGDIS‐II, we have investigated plasma resistance along a magnetic field and potential fluctuations in the detached recombining plasmas. Simple calculation on the ratio between the plasma length, at which plasma resistance and resistance of ion sheath formed around a probe tip become equal, and an electron collection length indicates that the evaluation of electron temperature Te becomes inaccurate at Te of less than 0.6 eV when plasma density and neutral pressure are 1.0 × 1018 m—3 and 10 mtorr, respectively. The potential fluctuation in detached recombining plasmas was found to be so large compared to Te/e, which can also modify the probe characteristics.  相似文献   

3.
We observed optical emission of molecular hydrogen in a recombining hydrogen plasma with an electron temperature of 0.1 eV and an electron density of 3 × 1012cm–3. The optical emission intensities of molecular hydrogen in the recombining plasma were roughly 10%–45% of those in an ionizing plasma with an electron temperature of 4 eV. The ratio was greater for a transition line originated from an excited state with a larger vibrational quantum number. Because of the low electron temperature of 0.1 eV, the production processes of excited states are not considered electron impact excitation in the recombining plasma. Possible recombination processes are discussed which produce excited states of molecular hydrogen in the recombining plasma (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The plasma region under investigation is separated from the discharge region by a mesh grid. Plasma potential and electron number densities and electron temperatures under bi‐Maxwellian approximation for electron distribution function of the multi‐dipole argon plasma are measured. The cold electrons in the diffusion region are produced by local ionization. The hot electrons are the ionizing electrons behaving as Maxwellian. The electron trapping process in the discharge region is produced by potential well due to positive plasma potential with respect to the anode and by a repulsive grid. The dependence of ratios of the density of the hot to the cold electrons NE (=Neh/Nec) and hot to cold electron temperature T(=Teh/Tec) in the diffusion region on the depth of the potential well has been investigated. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The transformation of low‐density amorphous (LDA) ice produced from high‐density amorphous (HDA) ice was studied up to 400 MPa as a function of temperature by in situ Raman spectroscopy and optical microscopy. Changes in these amorphous states of H2O were directly tracked without using emulsions to just above the crystallization temperature Tx. The spectra show significant changes occurring above ∼125 K. The results are compared with data reported for the relaxation behavior of HDA, to form what we call relaxed HDA, or rHDA. We find a close connection with expanded HDA (eHDA), which is reported to exist as another metastable form in this P–T region. The observation of this temperature‐induced LDA transition under pressure complements the previously observed pressure‐induced reversible transition between LDA and HDA at 120–140 K. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Modifications of K‐line profiles due to a warm dense plasma environment are a suitable tool for plasma diagnostics. We focus on Si Kα emissions due to an electron transfer from 2P to 1S shell. Besides 2P fine structure effects we also consider the influence of excited and higher ionized emitters. Generally spoken, a plasma of medium temperature and high density (warm dense matter) is created from bulk Si the greater part of atoms is ionized. The high energy of Kα x‐rays is necessary to penetrate and investigate the Si sample. The plasma effect influences the many‐particle system resulting in an energy shift due to electron‐ion and electron‐electron interaction. In our work we focus on pure Si using LS coupling. Non‐perturbative wave functions are calculated as well as ionization energies, binding energies and relevant emission energies using the chemical ab initio code Gaussian 03. The plasma effect is considered within a perturbative approach to the Hamiltonian. Using Roothaan‐Hartree‐Fock wave functions we calculate the screening effect within an ion‐sphere model. The different excitation and ionization probabilities of the electronic L‐shell and M‐shell lead to a charge state distribution. Using this distribution and a Lorentz profile convolution with a Gaussian instrument function we calculate spectral line profiles depending on the plasma parameters. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The spatiotemporal evolution of the plasma induced by interaction of an Nd-YAG laser pulse with the surface of distilled water is described. The temporal evolution from 200 ns after the plasma creation to 2200 ns of the H α and H β lines is reported. Supposing the local thermodynamic equilibrium, the two plasma parameters, electron density and temperature, are determined, including the influence of the self-absorption on its measurements. The spatial evolution of the H β intensity and of the electron density is given.  相似文献   

8.
Three dual mode microwave apparatus (one using S ‐band and two using X ‐band) have been developed to determine ambipolar diffusion and electron‐ion recombination rates under conditions such that Tgas = 300K and Te is varied from 300 K to 6300 K, in the afterglow period of the dc glow discharge. TheTM010 cylindrical cavity (in S ‐band) and TM011 open cylindrical cavity (X ‐band) are used to determine the electron density during the afterglow period and a non‐resonant waveguide mode is used to apply a constant microwave heating field to the electrons. To test the properties of the apparatus the neon afterglow plasma has been investigated. At Te = 300 K a value of α (Ne+2) = (1.7± 0.2) × 10–7cm3/s is obtained which is in good agreement with values of other investigators. Also similar variations of α as T–0.4e (S ‐band) and as T–0.42e (X ‐band) obeyed over the range 300 ≤ Te ≤ 6300K are in good agreement with some other previous measurements. The simplicity of the X‐band microwave apparatus also allows the measurements of the gas temperature dependency and the study of electron attachment and may be used simultaneously with optical or mass spectrometry investigations. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
It is shown that the collective dust‐dust attraction is enhanced by strong magnetic fields larger then the critical magnetic field determined be the condition that the Lorentz force acting on ions is larger than the friction of ions on dust grains related with the dust drag. It is demonstrated that with an increase of the magnetic field the deepness of the attraction potential well is increased in all directions to the magnetic field, that the distance of the minimum of the potential well along the magnetic filed (in both directions) is changed only slightly while the distance of the minimum of the attraction potential well is substantially decreased for directions perpendicular to the magnetic field. This means that the structures formed by attraction forces such as plasma crystals will be compressed perpendicular to the magnetic field (inter‐dust distance becomes smaller) and that the melting transition temperature should increased with an increase of the strength of the magnetic field. Numerical results are presented for dependence of the attraction potential well on the ratio of the strength of the magnetic field to the critical magnetic field strength, on the parameter P = ndZd/ni (nd and ni being the dust and ion densities respectively) and on the temperature ratio τ = Ti/Te (Te and Ti being the electron and ion temperatures respectively). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
From measurements of the Hα and Hβ spectral line profiles in a plasma, a method is developed which allows to separate the contributions of Doppler and Stark broadening. This method is superior to the deconvolution of Voigt profiles, in particular, when the lines are of low intensity. The electron density in the plasma can be calculated from the Stark broadening. An example is the low pressure (p ≈ 1 hPa) arc discharge of argon ion lasers which is characteristised by electron densities of approximately 1014 cm?3 at heavy particle temperatures of about 104 K. These plasma parameters lead to a broadening of the Balmer Hα and Hβ spectral lines of hydrogen, which has a low concentration within the discharge area. The spectral lines are broadened due to the electron density dependent Stark effect and the temperature responsive Doppler effect. The results are consistent with predictions of the argon ion laser modelling.  相似文献   

11.
We investigate the effect of the restoration of chiral symmetry on the quark potential in a quark–meson plasma by considering meson exchanges in the two flavor Nambu–Jona-Lasinio model at finite temperature and density. There are two possible oscillations in the chiral restoration phase; one is the Friedel oscillation due to the sharp quark Fermi surface at high density, and the other is the Yukawa oscillation driven by the complex meson poles at high temperature. The quark–meson plasma is strongly coupled in the temperature region 1≤T/T c≤3, with T c being the critical temperature of the chiral phase transition. The maximum coupling in this region is located at the phase transition point.  相似文献   

12.
Thomson scattering technique based on high power laser has already proved its superoirity in measuring the electron temperature (T e and density (n e) in fusion plasma devices like tokamaks. The method is a direct and unambiguous one, widely used for the localised and simultaneous measurements of the above parameters. In Thomson scattering experiment, the light scattered by the plasma electrons is used for the measurements. The plasma electron temperature is measured from the Doppler shifted scattered spectrum and density from the total scattered intensity. A single point Thomson scattering system involving a Q-switched ruby laser and PMTs as the detector is deployed in ADITYA tokamak to give the plasma electron parameters. The system is capable of providing the parameters T e from 30 eV to 1 keV and n e from 5 × 1012cm−3−5 × 1013cm−3. The system is also able to give the parameter profile from the plasma center (Z=0 cm) to a vertical position of Z=+22 cm to Z=−14 cm, with a spatial resolution of 1 cm on shot to shot basis. This paper discusses the initial measurements of the plasma temperature from ADITYA.  相似文献   

13.
Modification of electron density of an inhomogeneous, unmagnetized plasma by the relativistic ponderomotive force of intense microwave beams near the critical density is studied. Using the Maxwell and fluid equations and taking into account the relativistic mass, relativistic ponderomotive force, linear inhomogeneity for electron temperature, and tangential inhomogeneity for electron density, the non‐linear electron density, non‐linear dielectric permittivity, and non‐linear wave equations are derived. Results show that positive and negative values of σ1 and σ2 (degree of inhomogeneity of the background electron density and electron temperature, respectively) parameters can affect the electric and magnetic field profiles. In addition, profiles of the non‐linear electron density indicate that by decreasing the σ1 parameter, the amplitude of the peaks increases near the critical density. For positive values of the σ2 parameter, by increasing this parameter the amplitude of the peaks increases, while for negative values of the σ2 parameter, by decreasing this parameter the amplitude of the peaks increases.  相似文献   

14.
The present paper describes a spectroscopic method or determining electron temperature Te and density Ne in an argon plasma jet on the basis of a Collisional‐Radiative model of argon. Electron temperature and density in the argon plasma were measured by the method developed, and comparison of them was discussed with those obtained with a Langmuir probe. The results or Te and Ne obtained by the spectroscopic method agreed roughly with those by the probe.  相似文献   

15.
Magnetically confined argon plasma produced by hollow cathode arc discharge has been studied in different experimental conditions, with discharge current from 10–50 A, vessel argon pressure between 10–3 and 10–4 torr (1 torr=133·32 Pa) and axial magnetic field up to 0·12 T. The plasma density measured by a cylindrical Langmuir probe is found to be 1019 to 4 × 1019 m–3 and the electron temperatureT e varies between 2·5 and 4·8 eV. When an external axial magnetic field is applied the plasma temperature decreases with the increase in the magnetic field intensity until it reaches a minimum value at 0·075T and then increases with the same rate. This has been interpreted as high frequency waves excitation due to electron beam-plasma interaction, which explains the electron density jumps with the magnetic field intensity. Enhanced plasma transport across the magnetic field is studied and classified as anomalous diffusion.  相似文献   

16.
In this paper theory of calculation of non-LTE plasma composition is presented. The calculations are conducted for argon plasma for temperature ranges from 500 K to 30, 000 K and T e/T h ratios from 1 to 10. The effect of different versions of the Saha equation, Debye length, lowering of ionisation energy and pressure correction on the argon-plasma composition is evaluated. It was concluded that the modified Saha equation could not be used for calculation of non-LTE plasma composition. Application of various Debye lengths can change the electron number density by 8%. The lowering of the ionisation energy decreases the electron number density by 18%. For LTE-plasma pressure correction has a negligible effect on the electron number density.  相似文献   

17.
The frequency and temperature dependence of the real (ε′) and imaginary (ε″) parts of the dielectric constant of the polycrystalline complexes (α-CD)2 · Bal2 · I2 · 8H2O and (α-CD)2 · KI3 · I2 · 8H2O (α-CD = α-cyclodetrin) have been investigated over the frequency and temperature ranges 0–100 kHz and 120–300 K, respectively. The temperature dependences of ε′, ε″ and the phase shift φ show two steps, two peaks and two minima, respectively, revealing the existence of two kinds of water molecule, the tightly bound and the easily movable water molecules, in both complexes. The first peak of (T) or the first minimum of φ(T) presents the transformation of flip-flop hydrogen bonds to the normal state. The second ε″ (T) peak or φ(T) minimum corresponds to the easily movable water molecules or to a partial transformation of tightly bound to easily movable water molecules. For T > 270K both samples show semiconductive behaviour with energy gaps of 1.84eV for the (α-CD)2 · BaI2 · I2 · 8H2O complex and 1.36eV for the (α-CD)2 · KI3 · I2 · 8H2O complex. The conductivity at room temperature decreases in the order: (α-CD)2 · BaI2 · I2 · 8H2O > (α-CD)2 · LiI3 · I2 · 8H2O > (α-CD)2 · KI3 · I2 · 8H2O > (α-CD)2 · Cd0.5 · I5 · 26H2O. The relaxation time varies in a Λ-like curve (from 120 to 250 K) and rises rapidly for temperatures greater than 250 K, indicating the process of ionic movements. The activation energies around the transition temperature 0.98–1.09 k B T trans for (α-CD)2 · BaI2 · I2 · 8H2O and 1.06-1.55 k B T trans for (α-CD)2 · KI3 · I2 · 8H2O reveal the greater stability of the α-K complex against that of the α-Ba complex.  相似文献   

18.
A new method for calculating broadening of the H α line profile in a high-temperature plasma is proposed. Using the new program H-ALPHA, one can calculate the H α line profile with an error smaller than 3% in a wide range of electron temperatures and densities (T e=1–500 eV, n e=1014?1017 cm?3). On the basis of these calculations, a method for the measurement of plasma temperature and density from the experimental H α line profile is developed. The experimental tests of the method showed a good agreement with the diamagnetic measurements.  相似文献   

19.
《Current Applied Physics》2015,15(9):1036-1041
Spatial distributions of the effective electron temperature (Teff) and plasma potential were studied from the measurement of an electron energy probability function in a side type ferrite-core inductively coupled plasma with an argon–helium mixture. As the helium gas was diluted at the fixed total gas pressure of 5 mTorr in an argon discharge, the distribution of the plasma density and plasma potential changed from a concave to a flat profile, and finally became a convex profile, while all spatial profiles of Teff were hollow shapes with helium dilution in the argon discharge. This evolution of the plasma potential with helium gas could be explained by the increased energy relaxation length (λε), indicating the transition of electron kinetics from local to non-local kinetics.  相似文献   

20.
双温度氦等离子体输运性质计算   总被引:1,自引:0,他引:1       下载免费PDF全文
王海兴  孙素蓉  陈士强 《物理学报》2012,61(19):195203-195203
获得覆盖较宽温度和压力范围内的等离子体输运性质是进行等离子体传热和流动过程数值模拟的必要条件.本文采用Saha方程计算等离子体组分, 采用基于将Chapman-Enskog方法扩展到高阶近似的方法, 计算获得了电子温度(Te)不等于重粒子温度(Th)的情形下, 在300 K到40000 K的温度范围内氦等离子体的黏性、热导率和电导率. 研究结果表明压力和热力学非平衡参数(θ =Te/Th)对氦等离子体的输运性质有较大的影响. 在局域热力学平衡条件下,计算获得的氦等离子体输运性质和文献报道的数据符合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号