首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier–Stokes equations with a slip boundary condition. We establish the local well‐posedness of the strong solutions for initial boundary value problems for such systems. Furthermore, the vanishing viscosity limit process is established, and a strong rate of convergence is obtained as the boundary of the domain is flat. In addition, it is needed to add some additional condition for density to match well the boundary condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
We propose and analyze a two‐level method of discretizing the nonlinear Navier‐Stokes equations with slip boundary condition. The slip boundary condition is appropriate for problems that involve free boundaries, flows past chemically reacting walls, and other examples where the usual no‐slip condition u = 0 is not valid. The two‐level algorithm consists of solving a small nonlinear system of equations on the coarse mesh and then using that solution to solve a larger linear system on the fine mesh. The two‐level method exploits the quadratic nonlinearity in the Navier‐Stokes equations. Our error estimates show that it has optimal order accuracy, provided that the best approximation to the true solution in the velocity and pressure spaces is bounded above by the data. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 26–42, 2001  相似文献   

3.
We study the solutions of the Navier–Stokes equations when the initial vorticity is concentrated in small disjoint regions of diameter ?. We prove that they converge, uniformily in ?. for vanishing viscosity to the corresponding solutions of the Euler equations and they are connected to the vortex model.  相似文献   

4.
We investigate the uniform regularity and vanishing viscosity limit for the incompressible chemotaxis‐Navier‐Stokes system with Navier boundary condition for velocity field and Neumann boundary condition for cell density and chemical concentration in a 3D bounded domain. It is shown that there exists a unique strong solution of the incompressible chemotaxis‐Navier‐Stokes system in a finite time interval, which is independent of the viscosity coefficient. Moreover, this solution is uniformly bounded in a conormal Sobolev space, which allows us to take the vanishing viscosity limit to obtain the incompressible chemotaxis‐Euler system.  相似文献   

5.
In this paper, we consider incompressible viscous fluid flows with slip boundary conditions. We first prove the existence of solutions of the unsteady Navier–Stokes equations in n‐spacial dimensions. Then, we investigate the stability, uniqueness and regularity of solutions in two and three spacial dimensions. In the compactness argument, we construct a special basis fulfilling the incompressibility exactly, which leads to an efficient and convergent spectral method. In particular, we avoid the main difficulty for ensuring the incompressibility of numerical solutions, which occurs in other numerical algorithms. We also derive the vorticity‐stream function form with exact boundary conditions, and establish some results on the existence, stability and uniqueness of its solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This work investigates the solvability, regularity and vanishing viscosity limit of the 3D viscous magnetohydrodynamic system in a class of bounded domains with a slip boundary condition.  相似文献   

7.
We consider the short time strong solutions to the compressible magnetohydrodynamic equations with initial vacuum, in which the velocity field satisfies the Navier‐slip condition. The Navier‐slip condition differs in many aspects from no‐slip conditions, and it has attracted considerable attention in nanoscale and microscale flows research. Inspired by Kato and Lax's idea, we use the Lax–Milgram theorem and contraction mapping argument to prove local existence. Moreover, under the Navier‐slip condition, we establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of L norm of the deformation tensor D(u). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The large time behavior of solutions to the compressible Navier‐Stokes equations around the motionless state is considered in a cylinder under the slip boundary condition. It is shown that if the initial data are sufficiently small, the global solution uniquely exists and the large time behavior of the solution is described by a superposition of one‐dimensional nonlinear diffusion waves and a diffusive rigid rotation.  相似文献   

9.
We establish the vanishing viscosity limit of the Navier‐Stokes equations to the isentropic Euler equations for one‐dimensional compressible fluid flow. For the Navier‐Stokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup‐norm of solutions with respect to the physical viscosity coefficient may not be directly controllable. Furthermore, convex entropy‐entropy flux pairs may not produce signed entropy dissipation measures. To overcome these difficulties, we first develop uniform energy‐type estimates with respect to the viscosity coefficient for solutions of the Navier‐Stokes equations and establish the existence of measure‐valued solutions of the isentropic Euler equations generated by the Navier‐Stokes equations. Based on the uniform energy‐type estimates and the features of the isentropic Euler equations, we establish that the entropy dissipation measures of the solutions of the Navier‐Stokes equations for weak entropy‐entropy flux pairs, generated by compactly supported C2 test functions, are confined in a compact set in H?1, which leads to the existence of measure‐valued solutions that are confined by the Tartar‐Murat commutator relation. A careful characterization of the unbounded support of the measure‐valued solution confined by the commutator relation yields the reduction of the measurevalued solution to a Dirac mass, which leads to the convergence of solutions of the Navier‐Stokes equations to a finite‐energy entropy solution of the isentropic Euler equations with finite‐energy initial data, relative to the different end‐states at infinity. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
We establish the wellposedness of the time‐independent Navier–Stokes equations with threshold slip boundary conditions in bounded domains. The boundary condition is a generalization of Navier's slip condition and a restricted Coulomb‐type friction condition: for wall slip to occur the magnitude of the tangential traction must exceed a prescribed threshold, independent of the normal stress, and where slip occurs the tangential traction is equal to a prescribed, possibly nonlinear, function of the slip velocity. In addition, a Dirichlet condition is imposed on a component of the boundary if the domain is rotationally symmetric. We formulate the boundary‐value problem as a variational inequality and then use the Galerkin method and fixed point arguments to prove the existence of a weak solution under suitable regularity assumptions and restrictions on the size of the data. We also prove the uniqueness of the solution and its continuous dependence on the data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, we propose a spectral method for the vorticity‐stream function form of the Navier–Stokes equations with slip boundary conditions. The numerical solutions fulfill the incompressibility and the physical boundary conditions automatically. The stability and convergence of the proposed methods are proven. Numeric results demonstrate the efficiency of suggested algorithm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The Navier–Stokes equations for the motion of an incompressible fluid in three dimensions are considered. A partition of the evolution operator into high frequency and low frequency parts is derived. This decomposition is used to prove that the eigenvalues of the Navier–Stokes operator in the inviscid limit converge precisely to the eigenvalues of the Euler operator beyond the essential spectrum.  相似文献   

13.
The zero‐viscosity limit for an initial boundary value problem of the linearized Navier‐Stokes equations of a compressible viscous fluid in the half‐plane is studied. By means of the asymptotic analysis with multiple scales, we first construct an approximate solution of the linearized problem of the Navier‐Stokes equations as the combination of inner and boundary expansions. Next, by carefully using the technique on energy methods, we show the pointwise estimates of the error term of the approximate solution, which readily yield the uniform stability result for the linearized Navier‐Stokes solution in the zero‐viscosity limit. © 1999 John Wiley & Sons, Inc.  相似文献   

14.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (IP)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (IP)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions.  相似文献   

15.
In this paper, we prove the existence and uniqueness of the weak solution of the one‐dimensional compressible Navier–Stokes equations with density‐dependent viscosity µ(ρ)=ρθ with θ∈(0, γ?2], γ>1. The initial data are a perturbation of a corresponding steady solution and continuously contact with vacuum on the free boundary. The obtained results apply for the one‐dimensional Siant–Venant model of shallow water and generalize ones in (Arch. Rational Mech. Anal. 2006; 182: 223–253). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we investigate the vanishing viscosity limit problem for the 3D incompressible magnetohydrodynamic (MHD) system in a general bounded smooth domain of R 3 with the generalized Navier slip boundary conditions. We also obtain rates of convergence of the solution of viscous MHD to the corresponding ideal MHD. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The article mainly concerns modeling the stochastic input and its propagation in incompressible Navier‐Stokes(N‐S) flow simulations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to derive the equations in the weak form. The resulting set of deterministic equations is then solved with standard methods to obtain the mean solution and variance of the stochastic velocity. In this article, the main method employs the Hermite polynomial as the basis in random space. Cavity problems are given to demonstrate the process of numerical simulation. Furthermore, Monte‐Carlo simulation method is applied to illustrate the accurate numerical results. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

18.
The r‐Laplacian has played an important role in the development of computationally efficient models for applications, such as numerical simulation of turbulent flows. In this article, we examine two‐level finite element approximation schemes applied to the Navier‐Stokes equations with r‐Laplacian subgridscale viscosity, where r is the order of the power‐law artificial viscosity term. In the two‐level algorithm, the solution to the fully nonlinear coarse mesh problem is utilized in a single‐step linear fine mesh problem. When modeling parameters are chosen appropriately, the error in the two‐level algorithm is comparable to the error in solving the fully nonlinear problem on the fine mesh. We provide rigorous numerical analysis of the two‐level approximation scheme and derive scalings which vary based on the coefficient r, coarse mesh size H, fine mesh size h, and filter radius δ. We also investigate the two‐level algorithm in several computational settings, including the 3D numerical simulation of flow past a backward‐facing step at Reynolds number Re = 5100. In all numerical tests, the two‐level algorithm was proven to achieve the same order of accuracy as the standard one‐level algorithm, at a fraction of the computational cost. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

19.
A combination method of the Newton iteration and two‐level finite element algorithm is applied for solving numerically the steady Navier‐Stokes equations under the strong uniqueness condition. This algorithm is motivated by applying the m Newton iterations for solving the Navier‐Stokes problem on a coarse grid and computing the Stokes problem on a fine grid. Then, the uniform stability and convergence with respect to ν of the two‐level Newton iterative solution are analyzed for the large m and small H and h << H. Finally, some numerical tests are made to demonstrate the effectiveness of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

20.
In this paper, we consider low‐order stabilized finite element methods for the unsteady Stokes/Navier‐Stokes equations with friction boundary conditions. The time discretization is based on the Euler implicit scheme, and the spatial discretization is based on the low‐order element (P1P1 or P1P0) for the approximation of the velocity and pressure. Moreover, some error estimates for the numerical solution of fully discrete stabilized finite element scheme are obtained. Finally, numerical experiments are performed to confirm our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号