首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyrosinase was immobilized on Chitosan (CTS) beads to produce 3,4‐dihydroxy‐L‐phenylalanine (L ‐DOPA) from L ‐tyrosine. Epichlorohydrin (ECH), ethylene glycol diglycidyl ether (EGDE), and glutaraldehyde (GLU) were used as coupling agents, respectively. Ultraviolet/visible measurements on CTS films showed that the reaction intermediate (L ‐dopaquinone) attacked the amino groups on CTS, so the amine residues on chitosan were capped by acetic acid anhydride (Ac) or formaldehyde (Fm) to avoid the deactivation of the immobilized tyrosinase. The pH and temperature of the maximal rate to produce L‐DOPA were investigated. GLU (coupling agent) and Ac (capping agent) were selected for practical utility. A 7.5% (w/v) concentration of GLU was found to attain maximal activity of the immobilized enzyme. The thermal stability of tyrosinase immobilized on CTS‐GLU‐Ac, and after treatment with sodium borohydride, was enhanced to a great extent. The L ‐DOPA converting efficiency in the environmental conditions of this study decreased from 45.1% to 39.9% (between 1st and 30th batch). This immobilized tyrosinase can be used practically in the production of L‐DOPA from L‐tyrosine.  相似文献   

2.
《中国化学会会志》2018,65(9):1075-1081
Tyrosinase inhibitors from natural products have applications in the pharmaceutical, food, and cosmetic industries because of the functions of tyrosinase in skin disorders and in the enzymatic browning of fruits. Current in vitro inhibitor screening assays are based on the inhibition of the oxidation of l ‐3,4‐dihydroxyphenylalanine (l ‐DOPA) mediated by a mushroom tyrosinase. However, in these assays, a tyrosinase inhibitor or an antioxidant could inhibit dopaquinone formation. In this study, we aimed to eliminate this ambiguity by using a microplate assay integrating tyrosinase‐immobilized magnetic nanoparticles (TYR‐MNPs) and a homemade magnetic microplate for high‐throughput screening. After incubating extracts of natural products with TYR‐MNPs, the magnetic nanoparticles are attracted to the bottoms of wells, the extracts are rinsed, and TYR‐MNPs react with l ‐DOPA. This method can be used to screen compounds that interact with the active sites of the enzyme, or copper chelators that bind more strongly than tyrosinase to copper ions, distinguishing them from antioxidants or tyrosinase substrates. Integration with the homemade magnetic microplate enables high‐throughput inhibitor screening. Aloe vera flowers are crop by‐products, and litchi flowers fall after the blossom. Our work demonstrated that these flowers have tyrosinase inhibitory effects, thus increasing their value.  相似文献   

3.
The effect of pH on the enantiospecificity of Au (111) electrode modified with L ‐homocysteine was evaluated for the electrochemical redox reaction of 3,4‐dihydroxyphenylalanine (DOPA). Cyclic voltammetric peaks clearly exhibited enantiospecificity at pH 0.6 and 2, whereas no enantiospecificity was observed at pH 3, 4, and 5.5. Scanning tunneling microscopy confirmed the highly ordered (2√3×3√3)R30° structure of L ‐homocysteine at pH 0.6, at which L ‐homocysteine molecules form a dimer through the hydrogen‐bond between carboxy groups (COOH), while a disordered structure was observed at pH 5.5. These results suggest that the dimer formed in the acidic solutions at pH below 3 plays an important role in providing the enantiospecificity to the Au(111) surface.  相似文献   

4.
Silver nanoparticles (AgNPs) attract a great deal of attention for potent antibacterial capacity, but their use is challenged by limited stability. Inspired by the adhesive and redox properties of the mussel foot proteins containing L -3,4-dihydroxyphenylalanine (DOPA), a facile strategy for in situ synthesis of AgNPs using DOPA-containing fibroin is developed. Tyrosine residues in fibroin are transformed into DOPA via biomimetic synthesis method with content of 0.55 mol%. In situ synthesis generates stable and small AgNPs through DOPA bound in fibroin as a reducing and stabilizing agent. Narrow size distribution with average diameter of 20 nm and excellent monodispersity are obtained. Cross-linking with lysine increases the content of β-sheet to form hydrogel and achieves gradual release of silver. The material exhibits excellent antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. It can be potentially applied in biological and medical fields to treat bacterial infections.  相似文献   

5.
L ‐3,4‐dihydroxyphenylalanine (L‐DOPA) is a well‐recognized therapeutic compound to Parkinson's disease. Tyrosine is a precursor for the biosynthesis of L‐DOPA, both of which are widely found in traditional medicinal material, Mucuna pruriens. In this paper, we described a validated novel analytical method based on microchip capillary electrophoresis with pulsed electrochemical detection for the simultaneous measurement of L‐DOPA and tyrosine in M. pruriens. This protocol adopted end‐channel amperometric detection using platinum disk electrode on a homemade glass/polydimethylsiloxane electrophoresis microchip. The background buffer consisted of 10 mM borate (pH 9.5) and 0.02 mM cetyltrimethylammonium bromide, which can produce an effective resolution for the two analytes. In the optimal condition, sufficient electrophoretic separation and sensitive detection for the target analytes can be realized within 60 s. Both tyrosine and L‐DOPA yielded linear response in the concentration range of 5.0–400 μM (R2 > 0.99), and the LOD were 0.79 and 1.1 μM, respectively. The accuracy and precision of the established method were favorable. The present method shows several merits such as facile apparatus, high speed, low cost and minimal pollution, and provides a means for the pharmacologically active ingredients assay in M. pruriens.  相似文献   

6.
Films of PCUs grafted with L ‐nitrosocysteine (L ‐CySNO) were successfully prepared in the presence of 3‐aminopropyltriethoxysilane (APTES). The final products (L ‐CySNO‐grafted PCU) were characterized with ATR‐FTIR, SEM, XPS, and tensile strength measurement. Tensile strength of the L ‐CySNO‐grafted PCU was decreased compared to that of non‐grafted PCU. In vitro NO release from the produced films was obtained by using ascorbic acid (Vc) as reducing agent, and the velocity of the released NO was measured by the Griess assay. The effects of temperature, molecular weight of polycarbonate diols (PCN), and thickness of the films on in vitro NO release were investigated in detail. It was found that with the increase of temperature, the velocity of NO release increased, whereas with the increase of molecular weight of polycarbonate diols, the velocity decreased. However, thickness of PCU films has no effect on NO release. The results of cytotoxicity test and hemolytic test indicate that blood compatibility and biocompatibility of the grafted PCU are better than those of the synthesized PCU. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, the effects of 1 mol/L glycerol or sorbitol on the thermal dependence (27-47 degrees C) of the lysis of human erythrocytes by ethanol in saline solution (0.154 mol/L NaCl) have been evaluated. Lysis was monitored by measurement of the absorbance at 540 nm. Ethanol produced either lysis or protection against lysis depending on the conditions. These antagonistic effects are attributed to the existence of expanded (R) and compacted (T) erythrocytes, present under conditions of low and high osmolarity, respectively. The transitions of lysis of the R state and formation and lysis of the T state were all found to be sigmoidally defined. The ethanol concentration at the midpoint of the lysis transition of the R state (D(50R)) was found to decrease with increasing temperature and osmolarity. In the presence of glycerol or sorbitol, an increase in temperature led to smaller decreases in D(50R) and osmotic protection against lysis. The ethanol concentration at the midpoint of formation (S(50T)) and lysis (D(50T)) of the T state also decreased with increasing temperature and osmolarity. Lysis of R state erythrocytes is determined by the chaotropic action of ethanol, but the formation and lysis of T state erythrocytes are determined by osmotic pressure effects.  相似文献   

8.
A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH‐responsive drug release exploits the pH‐dependent changes in the coordination stoichiometry of iron(III)–3,4‐dihydroxyphenylalanine (DOPA) complexes, which play a major cross‐linking role in mussel byssal threads. Doxorubicin‐loaded polymeric NPs that are based on FeIII–DOPA complexation were thus synthesized with a DOPA‐modified recombinant mussel adhesive protein through a co‐electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the FeIII–DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that FeIII–DOPA complexation can be successfully utilized as a new design principle for pH‐responsive NPs for diverse controlled drug‐delivery applications.  相似文献   

9.
Styrene miniemulsions that were stabilized by common anionic surfactants (sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, and disulfonated alkyl diphenyl oxide sodium salt) polymerized at 25 °C in the presence of L ‐ascorbic acid without the addition of a free‐radical initiator. The polymerizations exhibited high rates and molecular weights, with conversions greater than 70% achieved in less than 1 h and weight‐average molecular weights greater than 1 × 106 g/mol. Polymers did not form in the absence of L ‐ascorbic acid. Although the final conversion was only slightly independent on the L ‐ascorbic acid concentration, it was dependent on the surfactant concentration. The rate and final conversion were also strongly dependent on the surfactant type. Moreover, it was possible to initiate polymerizations with a monomer‐soluble derivative of L ‐ascorbic acid (L ‐ascorbic acid 6‐palmitate), although the rates were dramatically reduced compared with those when water‐soluble L ‐ascorbic acid was used. High yields and high‐molecular‐weight polymers were also produced with butyl acrylate and methyl methacrylate with L ‐ascorbic acid in the presence of sodium dodecyl benzene sulfonate. The initiation was attributed to an interaction between the surfactant and L ‐ascorbic acid, which formed a redox initiation system that generated radicals capable of adding monomer. These results are of particular significance for redox‐initiated emulsion/miniemulsion polymerizations with L ‐ascorbic acid as the reducing agent and with sulfate or sulfonate surfactants. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 69–80, 2007  相似文献   

10.
Bioassay‐directed isolation and purification of the methanol extract of Moringa oleifera fruits yielded bioactive N‐benzyl thiocarbamates, N‐benzyl carbamates, benzyl nitriles, and a benzyl ester. Among these, methyl 2‐[4‐(α‐L ‐rhamnopyranosyl)phenyl]acetate ( 2 ), N‐[4‐(β‐L ‐rhamnopyranosyl)benzyl]‐1‐Oα‐D ‐glucopyranosylthiocarboxamide ( 3 ), 1‐O‐phenyl‐α‐L ‐rhamnopyranoside ( 5 ), and 4‐[(β‐D ‐glucopyranosyl)‐(1→3)‐(α‐L ‐rhamnopyranosyl)]phenylacetonitrile ( 6 ) are novel, and their structures were determined by spectroscopic methods. The known compounds isolated and characterized from the MeOH extract were niazirin (=4‐(α‐L ‐rhamnopyranosyl)phenylacetonitrile; 1 ), niazicin A (=methyl N‐{4‐[(4′‐O‐acetyl‐α‐L ‐rhamnopyranosyl)benzyl]}thiocarbamate; 4 ), methyl N‐{4‐[(α‐L ‐rhamnopyranosyl)benzyl]}carbamate ( 7 ), and methyl N‐{4‐[(4′‐O‐acetyl‐α‐L ‐rhamnopyranosyl)benzyl]}carbamate ( 8 ). The combined yield of these compounds from dried M. oleifera fruits was 1.63%. In rodent pancreatic β‐cells (INS‐1), compounds 4, 5, 6, 7 , and 8 at 100 ppm significantly stimulated insulin release. Cyclooxygenase‐1 (COX‐1) and cyclooxygenase‐2 (COX‐2) enzyme inhibition assays revealed that 5 and 6 were most active at 83 ppm. Compound 6 , however, demonstrated greater specificity for inhibition of COX‐2 enzyme (46%) than COX‐1 enzyme. Lipid peroxidation assays revealed that 4 and 6 at 50 ppm inhibited peroxidation reactions by 80 and 95%, respectively, while 3 and 8 inhibited lipid peroxidation by 35%. These compounds did not inhibit the cell growth when tested with human breast (MCF‐7), central nervous system (CNS, SF‐268), lung (NCI‐H460), or colon (HCT‐116) cancer cell lines. Moreover, these compounds were not cytotoxic at the concentrations tested.  相似文献   

11.
A modified electrode was prepared by modification of the carbon paste electrode (CPE) with a nanostructured material. This nanostructure with electrocatalytic activity was synthesized by combination of poly pyrrole and copper oxide nanoparticles (PPy/CuO). The structure and morphology of PPy/CuO was studied. The fabricated modified electrode (CPE‐PPy/CuO) exhibited an excellent electrocatalytic activity toward levodopa (L‐DOPA) and uric acid (UA) oxidation because of high conductivity, low electron transfer resistance and catalytic effect. The CPE‐PPy/CuO had a lower overvoltage and enhanced electrical current with respect to the bare CPE for both L‐DOPA and UA. Also, the modified electrode showed a good resolution for the overlapped anodic peaks of L‐DOPA and UA. This electrode was used for the successful simultaneous determination of L‐DOPA and UA. The electrochemical sensor responded to L‐DOPA and UA in the concentration range of 0.050–1200 μM and 0.040–2000 μM, respectively. The detection limits were obtained by differential pulse voltammetry as 15 nM for L‐DOPA and 20 nM for UA. Finally, the proposed electrode was used for determination of L‐DOPA and UA in real samples using standard addition method.  相似文献   

12.
Reversible vesicles from poly(L ‐glutamic acid)65‐block‐poly[(L ‐lysine)‐ran‐(L ‐3,4‐dihydroxyphenylalanine)]75 [PLGA65‐b‐P(LL‐r‐DOPA)75] block copolypeptide adopt different configurations depending on the surrounding pH. At pH = 3, AFM and TEM images show ellipsoidal morphologies, whereas at pH = 12 both TEM and AFM reveal the formation of hollow vesicles. At pH = 12, the P(LL‐r‐DOPA) block forms the internal layer of the vesicle shell and the subsequent oxygen‐mediated oxidation of the phenolic groups of the DOPA lead to the formation of quinonic intermediates, which undergo intermolecular dimerization to stabilize the vesicles via in situ cross‐linking. Consequently, the vesicles maintain their shape even when the pH is reversed back to 3, as confirmed by AFM and TEM.

  相似文献   


13.
A novel biodegradable unimolecular reversed micelle consisting of a poly(L ‐lactide) (PLA) shell and a hyperbranched D ‐mannan (HBM) core, that is, a chestnut‐shaped polymer (PLA–HBM), was synthesized by the polymerization of L ‐lactide on HBM with 4‐(dimethylamino)pyridine (DMAP) as the catalyst. The obtained polymers were soluble in dimethyl sulfoxide, tetrahydrofuran, and chloroform but insoluble in H2O. The molecular weights of the PLA chain on PLA–HBM tended to increase with increasing polymerization time. The number of PLA chains on PLA–HBM could be controlled by the ratio of DMAP to the sugar unit in HBM. The obtained copolymer, PLA–HBM, acted as a unimolecular reversed micelle with an encapsulation ability toward the hydrophilic molecule. In addition, the entrapped hydrophilic molecules were slowly released from the core of PLA–HBM, and the release rate was accelerated by the breaking of the PLA chains of the shell when proteinase K as a hydrolase of PLA was used. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 406–413, 2006  相似文献   

14.
We have designed and synthesized linear polymer‐based nanoconjugates and nanocomplexes bearing multivalent immunostimulatory ligands and also demonstrated that the synthetic multivalent nanocomplexes led to an enhanced stimulation of immune cells in vitro and antitumor and systemic immune memory response in vivo. We have developed hyaluronic acid (HA)‐based multivalent nanoconjugates and nanocomplexes for enhanced immunostimulation through the combination of multivalent immune adjuvants with CpG ODNs (as a TLR9 ligand) and cationic poly(L ‐lysine) (PLL; for the enhancement of cellular uptake). The multivalent HA‐CpG nanoconjugate efficiently stimulated the antigen‐presenting cells and the multivalent PLL/HA‐CpG nanocomplex also led to an enhanced cellular uptake as well as continuous stimulation of endosomal TLR9. The mice vaccinated with dendritic cells treated with the multivalent nanocomplex exhibited tumor growth inhibition as well as a strong antitumor memory response.  相似文献   

15.
Four novel chiral phenylacetylenes having an L ‐amino alcohol residue and two hydroxymethyl groups were synthesized and polymerized by an achiral catalyst ((nbd)Rh+6‐(C6H5)B?(C6H5)3]) or a chiral catalytic system ([Rh(nbd)Cl]2/(S)‐ or (R)‐phenylethylamine ((S)‐ or (R)‐PEA)). The two resulting polymers having an L ‐valinol or L ‐phenylalaninol residue showed Cotton effects at wavelengths around 430 nm. This observation indicated that they had an excess of one‐handed helical backbones. Positive and negative Cotton effects were observed only for the polymers having an L ‐valinol residue produced by using (R)‐ and (S)‐PEA as a cocatalyst, respectively, although the monomer had the same chirality. Even when the achiral catalyst was used, the two resulting polymers having an L ‐valinol or L ‐phenylalaninol residue showed Cotton effects despite the long distance between the chiral groups and the main chain. We have found the first example of a new type of chiral monomer, that is, a chiral phenylacetylene monomer having an L ‐amino alcohol residue and two hydroxy groups that was suitable for both modes of asymmetric polymerization, that is, the helix‐sense‐selective polymerization ( HSSP ) with the chiral catalytic system and the asymmetric‐induced polymerization ( AIP ) with the achiral catalyst. The other two monomers having L ‐alaninol and L ‐tyrosinol were found to be unsuitable to neither HSSP nor AIP because of their polymers' low solubility. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
We previously reported that topical irradiation of the eye by ultraviolet-B (UVB) activated hypothalamo-pituitary-adrenal axis (HPA-A) of the mouse to increase 3, 4-dihydroxyphenylalanine (DOPA)-positive melanocytes in the skin by an inducible nitric oxide synthase (iNOS)-dependent mechanism. This work demonstrates that irradiation of the eye by ultraviolet-A (UVA) specifically increased DOPA-positive cells in the mucosa of the jejunum and colon of C57BL/6J mice by some HPA- and iNOS-independent mechanism. UVA-induced increase in DOPA-positive cells in the intestine was inhibited by the administration of hexamethonium or prazosin plus propranolol, blockers for the sympathetic nervous system. UVA irradiation of the eye increased DOPA- and histidine decarboxylase (HDC)-positive cells in the intestinal mucosa of both C57BL/6J and WBB6F1/J mice but not in the mutant strain W/Wv of the latter that lack mast cells. UVA irradiation of the eye suppressed the intestinal peristalsis of control, hypophysectomized or iNOS(-/-) C57BL/6J mice by the mechanism that was inhibited by hexamethonium or prazosin plus propranolol. These observations suggest that UVA irradiation of the eye stimulated the sympathetic nervous system to increase the mucosal DOPA- and HDC-positive mast cells and suppressed the peristalsis of the small intestine of the mouse.  相似文献   

17.
A novel method of chiral ligand‐exchange CE was developed with L ‐amino acylamides as a chiral ligand and zinc(II) as a central ion. It has been demonstrated that these chiral complexes, such as Zn(II)‐L ‐alaninamide, Zn(II)‐L ‐prolinamide, and Zn(II)‐L ‐phenylalaninamide, are suitable for use as chiral selectors for the enantioseparation of either individual pair of or mixed dansyl amino acids. The optimal separation running buffer consisted of 5 mM ammonium acetate, 100 mM boric acid, 4 mM ZnSO4·7 H2O, and 8 mM L ‐amino acylamides at pH 8.2. The experiments showed that apart from the effect of the concentration of the complexes on the resolution and the migration time, the buffer pH also had a sharp influence on resolution. The employed chiral ligands exhibited different enantioselectivities and enantiomer migration orders. D ‐Amino acids migrate faster than L ‐amino acids when Zn(II)‐L ‐alaninamide and Zn(II)‐L ‐phenylalaninamide are used as chiral selectors, but it was observed that the migration order is reversed when Zn(II)‐L ‐prolinamide is used as the chiral selector. Furthermore, the amount of dansylated amino acids is found to be highly dependent on the labeling temperature.  相似文献   

18.
In this article, we show that the redox properties of the regulatory peptide L ‐glutathione are affected by the presence of nickel oxide impurities within single‐walled carbon nanotubes (SWCNTs). Glutathione is a powerful antioxidant that protects cells from oxidative stress by removing free radicals and peroxides. We show that the L ‐cysteine moiety in L ‐glutathione is responsible for the susceptibility to oxidation by metallic impurities present in the carbon nanotubes. These results have great significance for assessing the toxicity of carbon‐nanotube materials. The SWCNTs were characterized by Raman spectroscopy, high‐resolution X‐ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive X‐ray spectroscopy.  相似文献   

19.
Chemical cross-linking is an attractive approach to map peptide-protein and protein-protein complexes. Previously, we explored 3,4-dihydroxylphenylalanine (DOPA) as a protein cross-linking agent upon periodate oxidation (Burdine, L.; Gillette, T. G.; Lin, H.-J.; Kodadek, T. J. Am. Chem. Soc. 2004, 126, 11442-11443). We report here a study on the chemistry of DOPA-protein cross-linking. First, using a peptide nucleic acid templated system, we identified the alpha-amino, epsilon-amino of Lys, imidazole of His, and thiol of Cys as functional groups capable of attacking DOPA ortho-quinone. Second, we demonstrated that periodate-induced DOPA-protein cross-linking could be carried out efficiently at neutral pH in the presence of excess aliphatic 1,2-diols such as ethylene glycol, lactose, and adenosine triphosphate. This result indicated that DOPA-protein cross-linking and 1,2-diol oxidative cleavage proceed via different mechanisms and that carbohydrates will not interfere with this process when carried out in crude cell extracts or on intact cells.  相似文献   

20.
Carbon dots (Cdots) are an important probe for imaging and sensing applications because of their fluorescence property, good biocompatibility, and low toxicity. However, complex procedures and strong acid treatment are often required and Cdots suffer from low photoluminescence (PL) emission. Herein, a facile and general strategy using carbonization of precursors and then extraction with solvents is proposed for the preparation of nitrogen‐doped Cdots (N‐Cdots) with 3‐(3,4‐dihydroxyphenyl)‐L ‐alanine (L ‐DOPA), L ‐histidine, and L ‐arginine as precursor models. After they are heated, the precursors become carbonized. Nitrogen‐doped Cdots are subsequently extracted into N,N′‐dimethylformamide (DMF) from the carbogenic solid. A core–shell structure of Cdots with a carbon core and the oxygen‐containing shell was observed. Nitrogen has different forms in N‐Cdots and oxidized N‐Cdots. The doped nitrogen and low oxidation level in N‐Cdots improve their emission significantly. The N‐Cdots show an emission with a nitrogen‐content‐dependent intensity and Cdot‐size‐dependent emission‐peak wavelength. Imaging of HeLa cells, a human cervical cancer cell line, and HepG2 cells, a human hepatocellular liver carcinoma line, was observed with high resolution using N‐Cdots as a probe and validates their use in imaging applications and their multicolor property in the living cell system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号