首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystalline one‐dimensional compound, [RhII2(bza)4(pyz)]n ( 1 ) (bza=benzoate, pyz=pyrazine) demonstrates gas adsorbency for N2, NO, NO2, and SO2. These gas‐inclusion crystal structures were characterized by single‐crystal X‐ray crystallography as 1 ?1.5 N2 (298 K), 1 ?2.5 N2 (90 K), and 1 ?1.95 NO (90 K) under forcible adsorption conditions and 1 ?2 NO2 (90 K) and 1 ?3 SO2 (90 K) under ambient pressure. Crystal‐phase transition to the P space group that correlates with gas adsorption was observed under N2, NO, and SO2 conditions. The C2/c space group was observed under NO2 conditions without phase transition. All adsorbed gases were stabilized by the host lattice. In the N2, NO, and SO2 inclusion crystals at 90 K, short interatomic distances within van der Waals contacts were found among the neighboring guest molecules along the channel. The adsorbed NO molecules generated the trans‐NO???NO associated dimer with short intermolecular contacts but without the conventional chemical bond. The magnetic susceptibility of the NO inclusion crystal indicated antiferromagnetic interaction between the NO molecules and paramagnetism arising from the NO monomer. The NO2 inclusion crystal structure revealed that the gas molecules were adsorbed in the crystal in dimeric form, N2O4.  相似文献   

2.
3.
Guest Effect : The differences of nitrogen atom positions and the bridge bonds linked to two pyridine rings of some bipyridine guests can significantly affect the binding abilities and inclusion geometries of β‐cyclodextrin with the guests in both the solution and solid states.

  相似文献   


4.
A sytematic investigation of the molecular inclusion behavior by β‐cyclodextrin (gold) towards constitutionally different yet structurally similar bipyridine guests, demonstrates that differences of the nitrogen atom positions and the bridge bond linking the two pyridine rings of the bipyridine guests can significantly affect the binding abilities, inclusion geometries, and self‐assembly behavior of β‐cyclodextrin in both the solution and solid states. J. F. Stoddart and co‐workers suggest that these new superstructural and quantitative observations, with judicious constitutional design, allow highly ordered supramolecular arrays to be achieved conveniently in a controllable way. For more information, see their Full Paper on page 446 ff.

  相似文献   


5.
Suppression of the dimerization of the viologen radical cation by cucurbit[7]uril ( CB7 ) in water is a well‐known phenomenon. Herein, two counter‐examples are presented. Two viologen‐containing thread molecules were designed, synthesized, and thoroughly characterized by 1H DOSY NMR spectrometry, UV/Vis absorption spectrophotometry, square‐wave voltammetry, and chronocoulometry: BV 4+, which contains two viologen subunits, and HV 12+, which contains six. In both threads, the viologen subunits are covalently bonded to a hexavalent phosphazene core. The corresponding [3]‐ and [7]pseudorotaxanes that form on complexation with CB7 , that is, BV 4+?( CB 7)2 and HV 12+?( CB 7)6, were also analyzed. The properties of two monomeric control threads, namely, methyl viologen ( MV 2+) and benzyl methyl viologen ( BMV 2+), as well as their [2]pseudorotaxane complexes with CB7 ( MV 2+? CB7 and BMV 2+? CB7 ) were also investigated. As expected, the control pseudorotaxanes remained intact after one‐electron reduction of their viologen‐recognition stations. In contrast, analogous reduction of BV 4+?( CB 7)2 and HV 12+?( CB 7)6 led to host–guest decomplexation and release of the free threads BV 2( . +) and HV 6( . +), respectively. 1H DOSY NMR spectrometric and chronocoulometric measurements showed that BV 2( . +) and HV 6( . +) have larger diffusion coefficients than the corresponding [3]‐ and [7]pseudorotaxanes, and UV/Vis absorption studies provided evidence for intramolecular radical‐cation dimerization. These results demonstrate that radical‐cation dimerization, a relatively weak interaction, can be used as a driving force in novel molecular switches.  相似文献   

6.
7.
Assembly of copper(I) halide with a new tripodal ligand, benzene‐1,3,5‐triyl triisonicotinate (BTTP4), afforded two porous metal–organic frameworks, [Cu2I2(BTTP4)]?2 CH3CN ( 1? 2 CH3CN) and [CuBr(BTTP4)]?(CH3CN ? CHCl3 ? H2O) ( 2? solvents), which have been characterized by IR spectroscopy, thermogravimetry (TG), single‐crystal, and powder X‐ray diffraction (PXRD) methods. Compound 1.CH3CN is a polycatenated 3D framework that consists of 2D (6,3) networks through inclined catenation, whereas 2 is a doubly interpenetrated 3D framework possessing the ThSi2‐type ( ths ) (10,3)‐b topology. Both frameworks contain 1D channels of effective sizes 9×12 and 10×10 Å2, which amounts to 43 and 40 % space volume accessible for solvent molecules, respectively. The TG and variable‐temperature PXRD studies indicated that the frameworks can be completely evacuated while retaining the permanent porosity, which was further verified by measurement of the desolvated complex [Cu2I2(BTTP4)] ( 1′ ). The subsequent guest‐exchange study on the solvent‐free framework revealed that various solvent molecules can be adsorbed through a single‐crystal‐to‐single‐crystal manner, thus giving rise to the guest‐captured structures [Cu2I2(BTTP4)]?C6H6 ( 1.benzene ), [Cu2I2(BTTP4)]?2 C7H8 ( 1.2toluene ), and [Cu2I2(BTTP4)]?2 C8H10 ( 1.2ethyl benzene ). The gas‐adsorption investigation disclosed that two kinds of frameworks exhibited comparable CO2 storage capacity (86–111 mL g?1 at 1 atm) but nearly none for N2 and H2, thereby implying its separation ability of CO2 over N2 and H2. The vapor‐adsorption study revealed the preferential inclusion of aromatic guests over nonaromatic solvents by the empty framework, which is indicative of selectivity toward benzene over cyclohexane.  相似文献   

8.
Solvothermal reaction of Zn(NO3)2 ? 4 H2O, 1,4‐bis[2‐(4‐pyridyl)ethenyl]benzene (bpeb) and 4,4′‐oxybisbenzoic acid (H2obc) in the presence of dimethylacetamide (DMA) as one of the solvents yielded a threefold interpenetrated pillared‐layer porous coordination polymer with pcu topology, [Zn2(bpeb)(obc)2] ? 5 H2O ( 1 ), which comprised an unusual isomer of the well‐known paddle‐wheel building block and the transtranstrans isomer of the bpeb pillar ligand. When dimethylformamide (DMF) was used instead of DMA, a supramolecular isomer [Zn2(bpeb)(obc)2] ? 2 DMF ? H2O ( 2 ), with the transcistrans isomer of the bpeb ligand with a slightly different variation of the paddle‐wheel repeating unit, was isolated. In MeOH, single crystals of 2 were transformed by solvent exchange in a single‐crystal‐to‐single‐crystal (SCSC) manner to yield [Zn2(bpeb)(obc)2] ? 2 H2O ( 3 ), which is a polymorph of 1 . SCSC conversion of 3 to 2 was achieved by soaking 3 in DMF. Compounds 1 and 2 as well as 2 and 3 are supramolecular isomers.  相似文献   

9.
A host framework for inclusion of various guest molecules was investigated by preparation of inclusion crystals of 1,8‐bis(4‐aminophenyl)anthracene (1,8‐BAPA) with organic solvents. X‐ray crystallographic analysis revealed construction of the same inclusion space incorporating 1,8‐BAPA and eight guest molecules including both non‐polar (benzene) and polar guests (N,N‐dimethylformamide, DMF). Fluorescence efficiencies varied depending on guest molecule polarity; DMF inclusion crystals exhibited the highest fluorescence intensity (ΦF=0.40), four times as high as that of a benzene inclusion crystal (ΦF=0.10). According to systematic investigations of inclusion phenomena, strong host–guest interactions and filling of the inclusion space led to a high fluorescence intensity. Temperature‐dependent fluorescence spectral measurements revealed these factors effectively immobilised the host framework. Although hydrogen bonding commonly decreases fluorescence intensity, the present study demonstrated that such strong interactions provide excellent conditions for fluorescence enhancement. Thus, this remarkable behaviour has potential application toward sensing of highly polar molecules, such as biogenic compounds.  相似文献   

10.
The complexation‐induced critical aggregation concentrations of 1‐pyrenemethylaminium by mono‐p‐sulfonatocalix[n]arenes and bis‐p‐sulfonatocalix[n]arenes (n=4, 5) were systemically measured by fluorescence spectroscopy. In all cases, the complexation‐induced critical aggregation concentration decreases by about 3 times upon addition of p‐sulfonatocalix[n]arenes. However, the optimal molar ratios for the aggregation of 1‐pyrenemethylaminium by mono‐p‐sulfonatocalix[n]arenes and bis‐p‐sulfonatocalix[n]arenes are distinctly different: For mono‐p‐sulfonatocalix[n]arenes, the optimum mixing ratio for the aggregation of 1‐pyrenemethylaminium is 1:4 mono‐p‐sulfonatocalix[n]arenes/1‐pyrenemethylaminium, whereas only 2.5 molecules of 1‐pyrenemethylaminium can be bound by one cavity of bis‐p‐sulfonatocalix[n]arenes. The intermolecular complexation of mono‐p‐sulfonatocalix[n]arenes and bis‐p‐sulfonatocalix[n]arenes with 1‐pyrenemethylaminium led to the formation of two distinctly different nanoarchitectures, which were shown to be nanoscale vesicle and rod aggregates, respectively, by using dynamic laser scattering, TEM, and SEM. This behavior is also different from the fiber‐like aggregates with lengths of several micrometers that were formed by 1‐pyrenemethylaminium itself above its critical aggregation concentration. Furthermore, the obtained nanoaggregates exhibit benign water solubility, self‐labeled fluorescence, and, more importantly, temperature responsiveness.  相似文献   

11.
12.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   

13.
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy‐transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh‐Cp‐type metal complexes can be encapsulated inside a self‐assembled M6L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co‐encapsulation is observed. This principle is demonstrated by co‐encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge‐transfer interaction may also contribute to this effect. Charge‐transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge‐transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge‐transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.  相似文献   

14.
The modulation of the hierarchical nucleated self‐assembly of tri‐β3‐peptides has been studied. β3‐Tyrosine provided a handle to control the assembly process through host‐guest interactions with CB[7] and CB[8]. By varying the cavity size from CB[7] to CB[8] distinct phases of assembling tri‐β3‐peptides were arrested. Given the limited size of the CB[7] cavity, only one aromatic β3‐tyrosine can be simultaneously hosted and, hence, CB[7] was primarily acting as an inhibitor of self‐assembly. In strong contrast, the larger CB[8] can form a ternary complex with two aromatic amino acids and hence CB[8] was acting primarily as cross‐linker of multiple fibers and promoting the formation of larger aggregates. General insights on modulating supramolecular assembly can lead to new ways to introduce functionality in supramolecular polymers.  相似文献   

15.
A new cyclic [4]rotaxane composed of two flexible bis‐macrocycles and two rigid axles is described. Each bis‐macrocycle consists of two rings attached to antipodal meso positions of a central Zn porphyrin through single C? C bonds. Each ring incorporates a 2,9‐diphenyl‐1,10‐phenanthroline chelation site. The axles contain two coplanar bidentate sites derived from the 2,2′‐bipyridine motif. The building blocks were assembled by using a one‐pot threading‐and‐stoppering reaction, which afforded the [4]rotaxane in 50 % yield. The “gathering‐and‐threading” effect of copper(I) was utilised in the formation of a [4]pseudorotaxane, which was immediately converted to the corresponding [4]rotaxane by a quadruple CuAAC stoppering reaction. The rotaxane contains two face‐to‐face zinc porphyrins, which allowed the coordination of ditopic guest substrates. The rotaxane host showed remarkable flexibility and was able to adjust its conformation to the guest size. It can be distended and accommodate rod‐like guests of 2.6 to 15.8 Å in length.  相似文献   

16.
p-Tetrakis(phenylazo)-tetra-hydroxythiacalix[4]arene shows complexing properties with neutral molecules. A complex with pyridine was crystallized and the crystal structure determined. The crystals are monoclinic, space group C2/c, a = 49.953(10), b = 21.566(4), c = 23.448(5) Å, = 105.12(3)°, V = 24386(8) Å 3, Z = 16. Two macrocycles are positioned in such a way that they form a cavity where two pyridine molecules are encapsulated giving a 2:2 endocomplex. 5.5 other pyridine molecules are trapped between the macrocycles, two of them giving H-bonds with the calixarenes.  相似文献   

17.
Thiacalix[4]arene 2 , calix[4]arene 3 a and its tetraether fixed in the cone conformation 3 b form homo‐ and heterodimeric capsules in apolar solvents, which are held together by a seam of NH???O=P hydrogen bonds between carbamoylmethyl phospine oxide functions attached to their wide rim. Their internal volume of ~370 Å3 requires the inclusion of a suitable guest. Although neutral molecules such as adamantane (derivatives) or tetraethylammonium cations form kinetically stable complexes (1H‐ and 31P‐time scale), the included solvent is rapidly exchanged. The internal mobility of the included tetraethylammonium cation is distinctly higher (ΔG=42.5 and 49.7 kJ mol?1 for 3 a and 3 b ) than that for similar capsules of tetraurea calix[4]arenes 1 . Mixtures of 1 with 2 , 3 a , or 3 b contain only the two homodimers but the heterodimerization occurs with the tetraloop tetraurea 6 , which cannot form homodimers. Two dimers with cationic guests ( 2? (C5H5)2Co+ ?2 and 3 a? Et3NH+ ? H2O ?3 a ) were confirmed by single‐crystal X‐ray analysis.  相似文献   

18.
By introducing a flexible component into a molecular building block, we present an unprecedented alkyl‐decorated flexible crystalline material with a breathing behavior. Its selective adsorption is derived from the breathing effect induced by a guest triggered alkyl transformation. This feature allows the crystal to take up 2.5 mmol g?1 of chloroform with high adsorption selectivity (CHCl3/EA >2000 for example), implying a potential application in sorption separation and chemical sensors.  相似文献   

19.
A water‐soluble supramolecular polymer with a high degree of polymerization and viscosity has been constructed based on the strong host–guest interaction between p‐sulfonatocalix[4]arenes (SC4As) and viologen. A homoditopic doubly ethyl‐bridged bis(p‐sulfonatocalix[4]arene) (d‐SC4A) was prepared and its binding behavior towards methyl viologen compared with the singly ethyl‐bridged bis(p‐sulfonatocalix[4]arene) (s‐SC4A) by NMR spectroscopy and isothermal titration calorimetry. By employing a viologen dimer (bisMV4+) as the homoditopic guest, two linear AA/BB‐type supramolecular polymers, d‐SC4A?bisMV4+ and s‐SC4A?bisMV4+, were successfully constructed. Compared with s‐SC4A?bisMV4+, d‐SC4A?bisMV4+ shows much higher solubility and viscosity, and has also been characterized by viscosity, diffusion‐ordered NMR spectroscopy, dynamic light scattering, and atomic force microscopy measurements. Furthermore, the polymer is responsive to electrostimulus as viologen is electroactive, which was studied by cyclic voltammetry. This study represents a proof‐of‐principle as the polymer can potentially be applied as a self‐healing and degradable polymeric material.  相似文献   

20.
Native α‐cyclodextrin‐ (α‐CD) and permethylated α‐CD (PMeCD)‐based rotaxanes with various short alkylene chains as axles can be synthesized through a urea end‐capping method. Native α‐CD tends to form [3]‐ or [5]pseudorotaxanes and not [2]‐ or [4]pseudorotaxanes, which indicates that the coupled CDs act as a single fragment. End‐capping reactions of the pseudorotaxanes with C18 and C24 axle lengths do not occur because the axle termini are covered by the densely stacked CDs. The number of PMeCDs on the pseudorotaxane is flexible and mainly depends on the axle length. Peracetylated α‐CD (PAcCD)‐based rotaxanes are synthesized through O‐acetylation of the α‐CD‐based rotaxanes without any decomposition of the rotaxanated structures. The structures of PMeCD‐based [3]‐ and [4]rotaxanes, and the molecular dynamics calculations on [3]pseudorotaxanes, indicate that the tail face of PMeCDs is regularly directed toward the axle termini. On the basis of the results obtained, it can be concluded that the directions and numbers of CDs in rotaxanes containing short alkylene chains depend on 1) the interactions between CDs, 2) the length of the alkylene axle, and 3) the interactions between the axle end and tail face of the CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号