首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A series of 2,5‐bis(arylethynyl)rhodacyclopentadienes has been prepared by a rare example of regiospecific reductive coupling of 1,4‐(p‐R‐phenyl)‐1,3‐butadiynes (R?H, Me, OMe, SMe, NMe2, CF3, CO2Me, CN, NO2, ?C?C‐(p‐C6H4?NHex2), ?C?C?(p‐C6H4?CO2Oct)) at [RhX(PMe3)4] ( 1 ) (X=?C?C?SiMe3 ( a ), ?C?C‐(p‐C6H4?NMe2) ( b ), ?C?C?C?C?(p‐C6H4?NPh2) ( c ) or ?C?C?{p‐C6H4‐C?C?(p‐C6H4‐N(C6H13)2)} ( d ) or Me ( e )), giving the 2,5‐bis(arylethynyl) isomer exclusively. The rhodacyclopentadienes bearing a methyl ligand in the equatorial plane (compound 1 e ) have been converted into their chloro analogues by reaction with HCl etherate. The rhodacycles thus obtained are stable to air and moisture in the solid state and the acceptor‐substituted compounds are even stable to air and moisture in solution. The photophysical properties of the rhodacyclopentadienes are highly unusual in that they exhibit, exclusively, fluorescence between 500–800 nm from the S1 state, with quantum yields of Φ=0.01–0.18 and short lifetimes (τ=0.45–8.20 ns). The triplet state formation (ΦISC=0.57 for 2 a ) is exceptionally slow, occurring on the nanosecond timescale. This is unexpected, because the Rh atom should normally facilitate intersystem crossing within femto‐ to picoseconds, leading to phosphorescence from the T1 state. This work therefore highlights that in some transition‐metal complexes, the heavy atom can play a more subtle role in controlling the photophysical behavior than is commonly appreciated.  相似文献   

2.
The design of a synthetic route to a class of enantiomerically pure phosphaalkene–oxazolines (PhAk‐Ox) is presented. The condensation of a lithium silylphosphide and a ketone (the phospha‐Peterson reaction) was used as the P?C bond‐forming step. Attempted condensation of PhC(?O)Ox (Ox=CNOCH(iPr)C H2) and MesP(SiMe3)Li gave the unusual heterocycle (MesP)2C(Ph)?CN‐(S)‐CH(iPr)CH2O ( 3 ). However, PhAk‐Ox (S,E)‐MesP?C(Ph)CMe2Ox ( 1 a ) was successfully prepared by treating MesP(SiMe3)Li with PhC(?O)CMe2Ox (52 %). To demonstrate the modularity and tunability of the phospha‐Peterson synthesis several other phosphaalkene–oxazolines were prepared in an analogous manner to 1 a : TripP?C(Ph)CMe2Ox ( 1 b ; Trip=2,4,6‐triisopropylphenyl), 2‐iPrC6H4P?C(Ph)CMe2Ox ( 1 c ), 2‐tBuC6H4P?C(Ph)CMe2Ox ( 1 d ), MesP?C(4‐MeOC6H4)CMe2Ox ( 1 e ), MesP?C(Ph)C(CH2)4Ox ( 1 f ), and MesP?C(3,5‐(CF3)2C6H3)C(CH2)4Ox ( 1 g ). To evaluate the PhAk‐Ox compounds as prospective precursors to chiral phosphine polymers, monomer 1 a and styrene were subjected to radical‐initiated copolymerization conditions to afford [{MesPC(Ph)(CMe2Ox)}x{CH2CHPh}y]n ( 9 a : x=0.13n, y=0.87n; GPC: Mw=7400 g mol?1, PDI=1.15).  相似文献   

3.
Dimerization reactions of diphenyldiazomethane have been applied to the polycondensation of six bisdiazobenzyl arylenes, namely 1,4- and 1,3-bis(α-diazobenzyl)-benzenes C6H5CN2? (C6H4)? CN2C6H5; 1,4- and 1,3-bis(α-diazo-p-methoxybenzyl)-benzenes, p,p′-MeO? C6H4? CN2? (C6H4)? CN2C6H4? OMe; 4,4′-bis(α-diazobenzyl)-diphenylmethane, C6H5CN2? (C6H4CH2C6H4)? CN2C6H5; and 4,4′-bis(α-diazobenyl)-diphenyl ether, C6H5CN2? (C6H4? O? C6H4)CN2C6H5. Depending on the nature of the catalysts, polyene-arylenes (? C(Ar)?C(Ar)? C6H4)n, and polyazine-arylenes, (? C(Ar)?N? N? C(Ar)? C6H4? )n, can be obtained selectively by acid-catalyzed decomposition of these bisdiazoalkanes at room temperature. With perchloric acid and with arylsulfonic acids in strong polar media, polyene-arylenes are formed. On the other hand, boron trifluoride and arylsulfonic acids in solvents of low dielectric constant afford polyazine-arylenes. Less selective is the thermal decomposition at 75°C in toluene solution; it gives a polymer containing about 90% azine and 10% olefinic groups. All these polymers are soluble in common solvents. Their molecular weight vary from 3 200 to 5 000, i.e., X?n from 12 to 20. The polyene-arylenes are very stable and decompose only around 500°C; the polyazine-arylenes are less stable and decompose around 370°C by losing nitrogen.  相似文献   

4.
IR photodissociation spectra of mass‐selected clusters composed of protonated benzene (C6H7+) and several ligands L are analyzed in the range of the C? H stretch fundamentals. The investigated systems include C6H7+? Ar, C6H7+? (N2)n (n=1–4), C6H7+? (CH4)n (n=1–4), and C6H7+? H2O. The complexes are produced in a supersonic plasma expansion using chemical ionization. The IR spectra display absorptions near 2800 and 3100 cm?1, which are attributed to the aliphatic and aromatic C? H stretch vibrations, respectively, of the benzenium ion, that is, the σ complex of C6H7+. The C6H7+? (CH4)n clusters show additional C? H stretch bands of the CH4 ligands. Both the frequencies and the relative intensities of the C6H7+ absorptions are nearly independent of the choice and number of ligands, suggesting that the benzenium ion in the detected C6H7+? Ln clusters is only weakly perturbed by the microsolvation process. Analysis of photofragmentation branching ratios yield estimated ligand binding energies of the order of 800 and 950 cm?1 (≈9.5 and 11.5 kJ mol?1) for N2 and CH4, respectively. The interpretation of the experimental data is supported by ab initio calculations for C6H7+? Ar and C6H7+? N2 at the MP 2/6‐311 G(2df,2pd) level. Both the calculations and the spectra are consistent with weak intermolecular π bonds of Ar and N2 to the C6H7+ ring. The astrophysical implications of the deduced IR spectrum of C6H7+ are briefly discussed.  相似文献   

5.
The complexes [Pt(tBu3tpy){C?C(C6H4C?C)n?1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(C?CR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(C?CR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C?C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(C?CR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){C?C(C6H4C?C)n?1Ph}]+ (n=1–3), and [Pt(H3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(C?CR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(C?CR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(C?CAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(C?C)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1).  相似文献   

6.
A germylene/borane Lewis pair ( 2 ) was prepared from a 1,1‐carboboration of amidinato phenylethynylgermylene ( 1 ) by B(C6F5)3. Compound 2 reacted with iPrNCO and (4‐MeOC6H4)C(O)Me, respectively, with cleavage of the C=O double bond. In the first instance, O and iPrNC insert separately into the Ge?B bond to yield a GeBC2O‐heterocycle ( 3 ) and a GeBC3‐heterocycle ( 4 ). In the second case (4‐MeOC6H4)(Me)C inserts into the Ge?N bond of 2 while O is incorporated in the Ge?B bond to form a Ge‐centered spiroheterocycle ( 5 ). The reaction of 2 with tBuNC to give 6 , which has almost the same structure as 4 , proved the formation of the isonitrile during transformation from 2 and iPrNCO to 3 and 4 . The kinetic study of the reaction of 2 and iPrNCO gave evidence of proceeding through a GeBC3O‐heterocycle intermediate. In addition, a DFT study was performed to elucidate the reaction mechanism.  相似文献   

7.
Five crystalline 2-(dimethylsila)pyrimidine derivatives (Z) have been prepared in excellent 14 or satisfactory 5 yield and characterised. The source of each was ultimately Li[CH(SiMe2R)(SiMe2OMe)] [R = Me (B) or OMe (I)]. Compound 1 (Z with Ar = Ph, X = SiMe3, n = 1) was obtained from Z [with Ar = Ph, X = Li(OEt2), n = 4; previously isolated from B [P.B. Hitchcock, M.F. Lappert, X.-H. Wei, J. Organomet. Chem. 689 (2004) 1342]] and Me3SiCl. The potassium salt 2 [Z with Ar = C6H4But-4; X = K(thf)3, n = 2] was made from K[CH(SiMe3)(SiMe2OMe)] (C) (via B) and 4-ButC6H4CN. Treatment of 2 with 1,2-dibromoethane afforded 3 (Z with Ar = 4-ButC6H4; X = H, n = 1); which when reacted with successively n-butyllithium and Me3SiCl produced 4 (Z with Ar = 4-ButC6H4, X = SiMe3, n = 1). Compound 5 [Z with Ar = 4-ButC6H4, X = Li(hmpa)2, n = 1] resulted from I with 4-ButC6H4CN and then OP(NMe2)3 (≡ hmpa). Plausible reaction pathways from the appropriate alkali metal alkyl C or I to 2 or 5, respectively, are suggested; these involve regiospecific 1,3-migrations of SiMe2OMe from C → N and electrocyclic loss of Me3SiOMe or SiMe2(OMe)2, respectively. The X-ray structures of crystalline 1, 2 and 5 are presented.  相似文献   

8.
Terminal arylalumylene complexes of platinum [Ar‐Al‐Pt(PCy3)2] (Ar=2,6‐[CH(SiMe3)2]2C6H3 (Bbp) or 2,6‐[CH(SiMe3)2]2‐4‐(tBu)C6H2 (Tbb)) have been synthesized either by the reaction of a dialumene–benzene adduct with [Pt(PCy3)2], or by the reduction of 1,2‐dibromodialumanes Ar(Br)Al‐Al(Br)Ar in the presence of [Pt(PCy3)2]. X‐Ray crystallographic analysis reveals that the Al? Pt bond lengths of these arylalumylene complexes are shorter than the previously reported shortest Al? Pt distance. DFT calculations suggest that the Al? Pt bonds in the arylalumylene complexes have a significantly high electrostatic character.  相似文献   

9.
Self‐immobilized nickel and iron diimine catalysts bearing one or two allyl groups of [ArN?C]2(C10H6)NiBr2 [Ar = 4‐allyl‐2,6‐(i‐Pr)2C6H2] ( 1 ), [ArN?C(Me)][Ar′N? C(Me)]C5H3NFeCl2 [Ar = Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3, Ar = 2,6‐(i‐Pr)2C6H3, and Ar′ = 4‐allyl‐2,6‐(i‐Pr)2C6H3] were synthesized and characterized. All three catalysts were investigated for olefin polymerization. As a result, these catalysts not only showed high activities as the catalyst free from the allyl group, such as [ArN?C]2C10H6NiBr2 (Ar = 2,6‐(i‐Pr)2C6H2)], but also greatly improved the morphology of polymer particles to afford micron‐granula polyolefin. The self‐immobilization of catalysts, the formation mechanism of microspherical polymer, and the influence on the size of the particles are discussed. The molecular structure of self‐immobilized nickel catalyst 1 was also characterized by crystallographic analysis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1018–1024, 2004  相似文献   

10.
1,1′‐Ferrocenedithiol reacts with di(4‐methoxyphenyl)silane, diphenylsilane, and di(4‐fluorophenyl)silane in the presence of RhCl(PPh3)3 catalyst to give mixtures of 2,2‐diaryl‐1,3‐dithia‐2‐sila[3]ferrocenophanes (1a–3a) and ? (Fc? S? SiAr2? S) n? (Fc = 1,1′‐ferrocenylene; 1b: Ar = C6H4OMe‐4; 2b: Ar = Ph; 3b: Ar = C6H4F‐4). The products are isolated and characterized by NMR spectroscopy and elemental analyses. The polymers 1b–3b, obtained from a toluene‐soluble fraction of the products, show GPC elution patterns corresponding to Mn values of 2700–4600 (polystyrene standards). The UV–vis spectra of the ferrocenophanes and polymers exhibit a d–d transition peak at about 440 nm, while the polymers show a ππ* transition peak at 320–330 nm. The cyclic voltammograms of 3a (Ar = C6H4F ? 4) and 3b show a reversible redox of the iron center at 0.27 V and 0.35 V (Ag+/Ag) respectively. Reaction of 1,1′‐ferrocenedimethanol with diphenylsilane in the presence of RuCl2(PPh3)3 catalyst results in selective formation of 3,3‐diphenyl‐2,4‐dioxa‐3‐sila[5]ferrocenophane ( 4 ), whose structure was determined by X‐ray crystallography. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Copolymerization of (4‐hexylphenyl)allene and of (4‐dodecylphenyl)allene with carbon monoxide (1 atm) catalyzed by Rh[η3‐CH(Ar′)C{C(CHAr′)CH2C (CHAr′)CH2CH2CHCHAr′}CH2](PPh3)2 (A; Ar′ = C6H4OMe‐p) gives the corresponding polyketones: I‐[—CO—C(CHAr)—CH2—]n [1: Ar = C6H4C6H13p, 2 : Ar = C6H4C12H25p; I = CH2C(CHAr′)C(CHAr′)CH2C(CHAr′)CH2CH2CHCHAr′]. Molecular weights of the polyketone prepared from (4‐hexylphenyl)allene and CO are similar to the calculated from the monomer to initiator ratios until the molecular weight reaches to 45,000, indicating the living polymerization. Melting points of the polyketones I‐[—CO—C(CHC6H4R‐p)—CH2—]n (n = ca. 100) increase in the order R = C12H25 < C6H13 < C4H9 < CH3 < H. Block and random copolymerization of phenylallene and (4‐alkylphenyl)allene with carbon monoxide gives the new copoly‐ ketones. The polymerization of a mixture of (4‐methylphenyl)allene and smaller amounts of bis(allenyl)benzene under CO afforded the polyketone with a crosslinked structure. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1505–1511, 2000  相似文献   

12.
Sequential treatment of 2‐C6H4Br(CHO) with LiC≡CR1 (R1=SiMe3, tBu), nBuLi, CuBr?SMe2 and HC≡CCHClR2 [R2=Ph, 4‐CF3Ph, 3‐CNPh, 4‐(MeO2C)Ph] at ?50 °C leads to formation of an intermediate carbanion (Z)‐1,2‐C6H4{CA(=O)C≡CBR1}{CH=CH(CH?)R2} ( 4 ). Low temperatures (?50 °C) favour attack at CB leading to kinetic formation of 6,8‐bicycles containing non‐classical C‐carbanion enolates ( 5 ). Higher temperatures (?10 °C to ambient) and electron‐deficient R2 favour retro σ‐bond C?C cleavage regenerating 4 , which subsequently closes on CA providing 6,6‐bicyclic alkoxides ( 6 ). Computational modelling (CBS‐QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H+ gave 1,2‐dihydronaphthalen‐1‐ols, or under dehydrating conditions, 2‐aryl‐1‐alkynylnaphthlenes. Enolates 5 react in situ with: H2O, D2O, I2, allylbromide, S2Me2, CO2 and lead to the expected C ‐E derivatives (E=H, D, I, allyl, SMe, CO2H) in 49–64 % yield directly from intermediate 5 . The parents (E=H; R1=SiMe3, tBu; R2=Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R1=SiMe) and oxime formation. The latter allows formation of 6,9‐bicyclics via Beckmann rearrangement. The 6,8‐ring iodides are suitable Suzuki precursors for Pd‐catalysed C?C coupling (81–87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71–95 %).  相似文献   

13.
Ambient‐temperature photolysis of the aminoborylene complex [(OC)5Cr?B?N(SiMe3)2] in the presence of a series of trans‐bis(alkynyl)platinum(II) precursors of the type trans‐[Pt(CCAr)2(PEt3)2] (Ar=Ph, p‐C6H4OMe, and p‐C6H4CF3) successfully leads to twofold transfer of the borylene moiety [ : B?N(SiMe3)2] onto the alkyne functionalities. The alkynyl precursors and resultant bis(borirene)platinum(II) complexes formed are of the type trans‐[Pt(B{?N(SiMe3)2}C?CAr)2(PEt3)2] (Ar=Ph, p‐C6H4OMe, and p‐C6H4CF3). These species have all been successfully characterized by NMR, IR, and UV/Vis spectroscopy as well as by elemental analysis. Single‐crystal X‐ray diffraction has verified that these trans‐bis(borirene)platinum(II) complexes display coplanarity between the twin three‐membered rings across the platinum core in the solid state and stand as the first examples of coplanar conformations of twin borirene systems. These complexes were modeled using density functional theory (DFT), providing information helpful in determining the ability of the transition metal core to interact with each individual borirene ring system and allowing for the observed coplanarity of these rings in the solid state. This proposed transition metal interaction with the twin borirene systems is manifested in the electronic characterization of these borirene species, which display divergent photophysical UV/Vis spectroscopic profiles compared to a previously published mono(borirene)platinum(II) complex.  相似文献   

14.
The reactivity of square planar palladium(II) and platinum(II) complexes in trans or cis configuration, namely trans or cis‐[dichlorobis(tributylphosphine)platinum(II)] and trans‐[dichlorobis(tributylphosphine)palladium(II)] with 1,1′‐bis(ethynyl) 4,4′‐biphenyl, DEBP, leading to π‐conjugated organometallic oligomeric and polymeric metallaynes, was investigated by a systematic variation of the reaction conditions. The formation of polymers and oligomers with defined chain length [? M(PBu3)2 (C?C? C6H4? C6H4? C?C? )]n (n = 3–10 for the oligomers, n = 20–50 for the polymers) depends on the configuration of the precursor Pt(II) and Pd(II) complexes, the presence/absence of the catalyst CuI, and the reaction time. A series of model reactions monitored by XPS, GPC, and NMR 31P spectroscopy showed the route to modulate the chain growth. As expected, the nature of the transition metal (Pt or Pd) and the molecular weight of the polymers markedly influence the photophysical characteristics of the polymetallaynes, such as optical absorption and emission behavior. Polymetallaynes with nanostructured morphology could be obtained by a simple casting procedure of polymer solutions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3311–3329, 2007  相似文献   

15.
Hydrogallation Reactions Involving the Monoalkynes H5C6‐C≡C‐SiMe3 and H5C6‐C≡C‐CMe3cis/trans Isomerisation and Substituent Exchange Phenyl‐trimethylsilylethyne, H5C6‐C≡C‐SiMe3, reacted with different dialkylgallium hydrides, R2Ga‐H (R = Me, Et, nPr, iPr, tBu), by the addition of one Ga‐H bond to its C≡C triple bond (hydrogallation). The gallium atoms attacked selectively those carbon atoms, which were also attached to trimethylsilyl groups. The cis arrangement of Ga and H across the resulting C=C double bonds resulted only for the sterically most shielded di(tert‐butyl)gallium derivative, while in all other cases spontaneous cis/trans rearrangement occurred with the quantitative formation of the trans addition products. The diethyl compound Et2Ga‐C(SiMe3)=C(H)‐C6H5 ( 2 ) gave by substituent exchange the secondary products EtGa[C(SiMe3)=C(H)‐C6H5]2 ( 7 , Z,Z) and Ga[C(SiMe3)=C(H)‐C6H5]3 ( 8 ). Interestingly, compound 8 has two alkenyl groups with a Z configuration, while the third C=C double bond has the cis arrangement of Ga and H (E configuration). The reversibility of the cis/trans isomerisation of hydrogallation products was observed for the first time. tert‐Butyl‐phenylethyne gave the simple addition product, R2Ga(C6H5)=C(H)‐CMe3 ( 9 ), only with di(n‐propyl)gallium hydride.  相似文献   

16.
The platinum poly-yne polymer, [? C?C? SiMe2? C?C? Pt(PBu3)2? C?C? SiMe2? C?C? ]n (2), was synthesized by the oxidative coupling of a silicon–platinum monomer, trans-(PBu3)2Pt(C?C? SiMe2–C?CH)2 (1). The reaction of platinum poly-yne polymer 2 with dicobaltoctacarbonyl gave μ-coordinated complexes, {[? C?C? SiMe2? C?C? Pt(PBu3)2? C?C? SiMe2? C?C? ] [Co2(Co)6]2}n (4). the electric conductivity of iodine adducts of the polymer complexes 4 was 3.0×10?5 S cm?1. As an aid to spectroscopic characterization of the polymer complex 4, a model complex, {trans-[(PBu3)2Pt? (C?C? SiMe2? C?CH)2]} {[Co2(CO)6]2} (3), was also prepared by the reaction of 1 with dicobaltocatacarbonyl. Selective coordination of Co2(CO)6 groups to ? SiMe2? C?C C?C? Si(Me)2? Moieties and coordinative inertness of the Pt? C?C? moieties were confirmed by comparison of the NMR spectra of 3 with those of 4. All new compounds have been characterized by analytical and spectral analysis (IR, 1H NMR).  相似文献   

17.
The first four‐coordinate methanediide/alkyl lutetium complex (BODDI)Lu2(CH2SiMe3)22‐CHSiMe3)(THF)2 (BODDI=ArNC(Me)CHCOCHC(Me)NAr, Ar=2,6‐iPr2C6H3) ( 1 ) was synthesized by a thermolysis methodology through α‐H abstraction from a Lu–CH2SiMe3 group. Complex 1 reacted with equimolar 2,6‐iPrC6H3NH2 and Ph2C?O to give the corresponding lutetium bridging imido and oxo complexes (BODDI)Lu2(CH2SiMe3)22N‐2,6‐iPr2C6H3)(THF)2 ( 2 ) and (BODDI)Lu2(CH2SiMe3)22‐O)(THF)2 ( 3 ). Treatment of 3 with Ph2C?O (4 equiv) caused a rare insertion of Lu–μ2‐O bond into the C?O group to afford a diphenylmethyl diolate complex 4 . Reaction of 1 with PhN=C?O (2 equiv) led to the migration of SiMe3 to the amido nitrogen atom to give complex (BODDI)Lu2(CH2SiMe3)2‐μ‐{PhNC(O)CHC(O)NPh(SiMe3)‐κ3N,O,O}(THF) ( 5 ). Reaction of 1 with tBuN?C formed an unprecedented product (BODDI)Lu2(CH2SiMe3){μ2‐[η22tBuNC(=CH2)SiMe2CHC?NtBu‐κ1N]}(tBuN?C)2 ( 6 ) through a cascade reaction of N?C bond insertion, sequential cyclometalative γ‐(sp3)‐H activation, C?C bond formation, and rearrangement of the newly formed carbene intermediate. The possible mechanistic pathways between 1 , PhN?C?O, and tBuN?C were elucidated by DFT calculations.  相似文献   

18.
A series of α‐diimine nickel(II) complexes containing chloro‐substituted ligands, [(Ar)N?C(C10H6)C?N(Ar)]NiBr2 ( 4a , Ar = 2,3‐C6H3Cl2; 4b , Ar = 2,4‐C6H3Cl2; 4c , Ar = 2,5‐C6H3Cl2; 4d , Ar = 2,6‐C6H3Cl2; 4e , Ar = 2,4,6‐C6H2Cl3) and [(Ar)N?C(C10H6)C?N(Ar)]2NiBr2 ( 5a , Ar = 2,3‐C6H3Cl2; 5b , Ar = 2,4‐C6H3Cl2; 5c , Ar = 2,5‐C6H3Cl2), have been synthesized and investigated as precatalysts for ethylene polymerization. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, these complexes are highly effective catalysts for the oligomerization or polymerization of ethylene under mild conditions. The catalyst activity and the properties of the products were strongly affected by the aryl‐substituents of the ligands used. Depending on the catalyst structure, it is possible to obtain the products ranging from linear α‐olefins to high‐molecular weight polyethylenes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1964–1974, 2006  相似文献   

19.
Si-containing mono- and disubstituted polyacetylenes(? [CMe?C(SiMe3)] n? , ? [CH?H(n? C5H11)SiMe3]n? , etc.) underwent degradation in air; many of them exhibited relatively high yields of main-chain scission (Gs > 1). The Gs values for the polymers having a long n-alkyl group were usually large (ca. 2). In contrast, no polymer degradation occurred in vacuum, indicating that oxygen is necessary for the radiolysis. The polymers irradiated in air contained C?O and Si? O groups, and dissolved in polar solvents, which are nonsolvents of the starting polymers. From the radiation sensitivity and thermal degradability of these polymers, it is concluded that disubstituted polymers with high Si contents (? [CMe?C(SiMe3)]n? , ? [CMe?C(SiMe2CH2SiMe3)]n? , etc.) are not only radiation-sensitive but also thermally stable.  相似文献   

20.
The synthesis of 7′-aryl-7′-apo-β-carotenes, where aryl (Ar) is Ph, 4-NO2C6H4, 4-MeOC6H4, 4-(MeO2C)C6H4, C6F5, and 2,4,6-Me3C6H2, is described. NMR Chemical shifts of all H- and C-atoms are presented, together with specific examples of the spectra. In contrast to 1H chemical shifts which, except for H? C(8′) and H? C(7′), did not differ greatly from those of β,β-carotene, considerable variations in 13C chemical shifts were observed. Signals of the C(α) atoms of the polyene chain [C(β)? C(α)] +n Ar were shielded, those of the C(β) atoms were deshielded, with some exceptions when n = 1; the effects decreased with increasing n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号