首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the Poisson structure associated to the defocusing Ablowitz‐Ladik equation from a functional‐analytical point of view by reexpressing the Poisson bracket in terms of the associated Carathéodory function. Using this expression, we are able to introduce a family of compatible Poisson brackets that form a multi‐Hamiltonian structure for the Ablowitz‐Ladik equation. Furthermore, we show using some of these new Poisson brackets that the Geronimus relations between orthogonal polynomials on the unit circle and those on the interval define an algebraic and symplectic mapping between the Ablowitz‐Ladik and Toda hierarchies. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
In the paper, we first investigate symmetries of isospectral and non‐isospectral four‐potential Ablowitz–Ladik hierarchies. We express these hierarchies in the form of un,t= LmH(0) , where m is an arbitrary integer (instead of a nature number) and L is the recursion operator. Then by means of the zero‐curvature representations of the isospectral and non‐isospectral flows, we construct symmetries for the isospectral equation hierarchy as well as non‐isospectral equation hierarchy, respectively. The symmetries, respectively, form two centerless Kac‐Moody‐Virasoro algebras. The recursion operator L is proved to be hereditary and a strong symmetry for this isospectral equation hierarchy. Besides, we make clear for the relation between four‐potential and two‐potential Ablowitz–Ladik hierarchies. The even order members in the four‐potential Ablowitz–Ladik hierarchies together with their symmetries and algebraic structures can be reduced to two‐potential case. The reduction keeps invariant for the algebraic structures and the recursion operator for two potential case becomes L2 .  相似文献   

3.
The purpose of this paper is to construct the inverse scattering transform for the focusing Ablowitz‐Ladik equation with nonzero boundary conditions at infinity. Both the direct and the inverse problems are formulated in terms of a suitable uniform variable; the inverse problem is posed as a Riemann‐Hilbert problem on a doubly connected curve in the complex plane, and solved by properly accounting for the asymptotic dependence of eigenfunctions and scattering data on the Ablowitz‐Ladik potential.  相似文献   

4.
Our purpose is to develop the inverse scattering transform for the nonlocal semidiscrete nonlinear Schrödinger equation (called the Ablowitz–Ladik equation) with \(\mathcal{PT}\) symmetry. This includes the eigenfunctions (Jost solutions) of the associated Lax pair, the scattering data, and the fundamental analytic solutions. In addition, we study the spectral properties of the associated discrete Lax operator. Based on the formulated (additive) Riemann–Hilbert problem, we derive the one- and two-soliton solutions for the nonlocal Ablowitz–Ladik equation. Finally, we prove the completeness relation for the associated Jost solutions. Based on this, we derive the expansion formula over the complete set of Jost solutions. This allows interpreting the inverse scattering transform as a generalized Fourier transform.  相似文献   

5.
The non-isospectral Ablowitz–Ladik hierarchy is integrated by the inverse scattering transform. In contrast with the isospectral Ablowitz–Ladik hierarchy, the eigenvalues of the non-isospectral Ablowitz–Ladik equations in the scattering data are time-dependent. The multi-soliton solution for the hierarchy is presented. The reductions to the non-isospectral discrete NLS hierarchy and the non-isospectral discrete mKdV hierarchy and their solutions are considered.  相似文献   

6.
We study the standing periodic waves in the semidiscrete integrable system modeled by the Ablowitz–Ladik (AL) equation. We have related the stability spectrum to the Lax spectrum by separating the variables and by finding the characteristic polynomial for the standing periodic waves. We have also obtained rogue waves on the background of the modulationally unstable standing periodic waves by using the end points of spectral bands and the corresponding eigenfunctions. The magnification factors for the rogue waves have been computed analytically and compared with their continuous counterparts. The main novelty of this work is that we explore a nonstandard linear Lax system, which is different from the standard Lax representation of the AL equation.  相似文献   

7.
The connection of orthogonal polynomials on the unit circle to the defocusing Ablowitz–Ladik integrable system involves the definition of a Poisson structure on the space of Verblunsky coefficients. In this paper, we compute the complete set of Poisson brackets for the monic orthogonal and the orthonormal polynomials on the unit circle, as well as for the second kind polynomials and the Wall polynomials. This answers a question posed by Cantero and Simon (J Approx Theory 158(1):3–48, 2009), for the case of measures with finite support. We also show that the results hold for the case of measures with periodic Verblunsky coefficients.  相似文献   

8.
CMV matrices are the unitary analog of Jacobi matrices; we review their general theory.  相似文献   

9.
We consider additive two‐level preconditioners, with a local and a global component, for the Schur complement system arising in non‐overlapping domain decomposition methods. We propose two new parallelizable local preconditioners. The first one is a computationally cheap but numerically relevant alternative to the classical block Jacobi preconditioner. The second one exploits all the information from the local Schur complement matrices and demonstrates an attractive numerical behaviour on heterogeneous and anisotropic problems. We also propose two implementations based on approximate Schur complement matrices that are cheaper alternatives to construct the given preconditioners but that preserve their good numerical behaviour. Through extensive computational experiments we study the numerical scalability and the robustness of the proposed preconditioners and compare their numerical performance with well‐known robust preconditioners such as BPS and the balancing Neumann–Neumann method. Finally, we describe a parallel implementation on distributed memory computers of some of the proposed techniques and report parallel performances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
In this contribution we are focused on some spectral transformations of Hermitian linear functionals. They are the analogues of the Christoffel transform for linear functionals, i. e. for Jacobi matrices which has been deeply studied in the past. We consider Hermitian linear functionals associated with a probability measure supported on the unit circle. In such a case we compare the Hessenberg matrices associated with such a probability measure and its Christoffel transform. In this way, almost unitary matrices appear. We obtain the deviation to the unit matrix both for principal submatrices and the complete matrices respectively.  相似文献   

11.
In this paper, we investigate the properties of a special kind of periodic Jacobi matrices. We show that the solution of the inverse problem for periodic Jacobi matrices is unique if and only if the matrix is of that special kind. Moreover, we present an algorithm to construct the solution of that inverse problem and give some illustrative examples. Finally, we perform a stability analysis of the algorithm.  相似文献   

12.
It has been demonstrated that the nonlinear Schrödinger(NLS) equation is sensitive to discretizations. In the focusingcase this is due to the homoclinic structure associated withthe NLS equation. In this paper we show that various numericalschemes for the defocusing case are also prone to instabilities,although not as severe as those of the focusing equation. Anintegrable discretization due to Ablowitz and Ladik does notsuffer from the same instabilities. However, it is shown thatit develops a focusing singularity if a threshold conditionis exceeded. Numerical examples illustrating the phenomena pertainingto the defocusing equation are given.  相似文献   

13.
In this paper we analyze convergence of basic iterative Jacobi and Gauss–Seidel type methods for solving linear systems which result from finite element or finite volume discretization of convection–diffusion equations on unstructured meshes. In general the resulting stiffness matrices are neither M‐matrices nor satisfy a diagonal dominance criterion. We introduce two newmatrix classes and analyse the convergence of the Jacobi and Gauss–Seidel methods for matrices from these classes. A new convergence result for the Jacobi method is proved and negative results for the Gauss–Seidel method are obtained. For a few well‐known discretization methods it is shown that the resulting stiffness matrices fall into the new matrix classes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
In the paper, we continue to consider symmetries related to the Ablowitz–Ladik hierarchy. We derive symmetries for the integrable discrete nonlinear Schrödinger hierarchy and discrete AKNS hierarchy. The integrable discrete nonlinear Schrödinger hierarchy is in scalar form and its two sets of symmetries are shown to form a Lie algebra. We also present discrete AKNS isospectral flows, non‐isospectral flows and their recursion operator. In continuous limit these flows go to the continuous AKNS flows and the recursion operator goes to the square of the AKNS recursion operator. These discrete AKNS flows form a Lie algebra that plays a key role in constructing symmetries and their algebraic structures for both the integrable discrete nonlinear Schrödinger hierarchy and discrete AKNS hierarchy. Structures of the obtained algebras are different structures from those in continuous cases which usually are centerless Kac–Moody–Virasoro type. These algebra deformations are explained through continuous limit and degree in terms of lattice spacing parameter h.  相似文献   

15.
In this paper, we study a class of tuned preconditioners that will be designed to accelerate both the DACG–Newton method and the implicitly restarted Lanczos method for the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices arising in large‐scale scientific computations. These tuning strategies are based on low‐rank modifications of a given initial preconditioner. We present some theoretical properties of the preconditioned matrix. We experimentally show how the aforementioned methods benefit from the acceleration provided by these tuned/deflated preconditioners. Comparisons are carried out with the Jacobi–Davidson method onto matrices arising from various large realistic problems arising from finite element discretization of PDEs modeling either groundwater flow in porous media or geomechanical processes in reservoirs. The numerical results show that the Newton‐based methods (which includes also the Jacobi–Davidson method) are to be preferred to the – yet efficiently implemented – implicitly restarted Lanczos method whenever a small to moderate number of eigenpairs is required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Hermitian and unitary matrices are two representatives of the class of normal matrices whose full eigenvalue decomposition can be stably computed in quadratic computing complexity once the matrix has been reduced, for instance, to tridiagonal or Hessenberg form. Recently, fast and reliable eigensolvers dealing with low‐rank perturbations of unitary and Hermitian matrices have been proposed. These structured eigenvalue problems appear naturally when computing roots, via confederate linearizations, of polynomials expressed in, for example, the monomial or Chebyshev basis. Often, however, it is not known beforehand whether or not a matrix can be written as the sum of a Hermitian or unitary matrix plus a low‐rank perturbation. In this paper, we give necessary and sufficient conditions characterizing the class of Hermitian or unitary plus low‐rank matrices. The number of singular values deviating from 1 determines the rank of a perturbation to bring a matrix to unitary form. A similar condition holds for Hermitian matrices; the eigenvalues of the skew‐Hermitian part differing from 0 dictate the rank of the perturbation. We prove that these relations are linked via the Cayley transform. Then, based on these conditions, we identify the closest Hermitian or unitary plus rank k matrix to a given matrix A, in Frobenius and spectral norm, and give a formula for their distance from A. Finally, we present a practical iteration to detect the low‐rank perturbation. Numerical tests prove that this straightforward algorithm is effective.  相似文献   

17.
In this study, we consider the stability of tumor model by using the standard differential geometric method that is known as Kosambi‐Cartan‐Chern (KCC) theory or Jacobi stability analysis. In the KCC theory, we describe the time evolution of tumor model in geometric terms. We obtain nonlinear connection, Berwald connection and KCC invariants. The second KCC invariant gives the Jacobi stability properties of tumor model. We found that the equilibrium points are Jacobi unstable for positive coordinates. We also discussed the time evolution of components of deviation tensor and the behavior of deviation vector near the equilibrium points.  相似文献   

18.
刘花璐  陈希 《数学杂志》2015,35(1):149-153
本文给出了k-广义(反)Hermite矩阵的概念,研究了它的性质及其与k-广义酉矩阵之间的联系,推广了酉矩阵和(反)Hermite矩阵的相应结果.  相似文献   

19.
Complex Jacobi matrices play an important role in the study of asymptotics and zero distribution of formal orthogonal polynomials (FOPs). The latter are essential tools in several fields of numerical analysis, for instance in the context of iterative methods for solving large systems of linear equations, or in the study of Padé approximation and Jacobi continued fractions. In this paper we present some known and some new results on FOPs in terms of spectral properties of the underlying (infinite) Jacobi matrix, with a special emphasis to unbounded recurrence coefficients. Here we recover several classical results for real Jacobi matrices. The inverse problem of characterizing properties of the Jacobi operator in terms of FOPs and other solutions of a given three-term recurrence is also investigated. This enables us to give results on the approximation of the resolvent by inverses of finite sections, with applications to the convergence of Padé approximants.  相似文献   

20.
To get more insight into the relation between discrete model and continuous counterpart, a new integrable semi-discrete Kundu–Eckhaus equation is derived from the reduction in an extended Ablowitz–Ladik hierarchy. The integrability of the semi-discrete model is confirmed by showing the existence of Lax pair and infinite number of conservation laws. The dynamic characteristics of the breather and rational solutions have been analyzed in detail for our semi-discrete Kundu–Eckhaus equation to reveal some new interesting phenomena which was not found in continuous one. It is shown that the theory of the discrete system including Lax pair, Darboux transformation and explicit solutions systematically yields their continuous counterparts in the continuous limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号