首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The effect of VO2+ ions on the composition and kinetics of calcium polyvanadate precipitation from solutions with 1.5 ≤ pH ≤ 9 at 80–90°C has been studied. For 1,5 ≤ pH < 3 and V4+/V5+ = 0.11–9, the precipitated compounds have the general formula Ca x V y 4+ V 12?y 5+ O31?δ · nH2O (0.8 ≤ x ≤ 1.06, 2 ≤ y ≤ 3, 0.94 ≤ δ ≤ 1.5). The maximum vanadium(IV) proportion (y = 3) in the precipitates is achieved when V4+/V5+ = 0.5?1.0 in the solution and pH is 3. Polyvanadate precipitation at pH 1.7 has a long induction period (up to 30 min), which is not observed for V4+/V5+ > 0.1. Precipitation in solutions with pH 3 occurs only when VO2+ ions are added, with a maximum rate near V4+/V5+ = 0.2 and in presence of chloride ions. The processes are controlled by a secondorder reaction on the polyvanadate surface.  相似文献   

2.
The phase and chemical compositions of the precipitates forming in the Sr(VO3)2-VOCl2-H2O system in the V4+/V5+ = 0.11–9 range at 80–90°C are reported. At pH 1–3 and V4+/V5+ = 0.25−9, the general formula of the precipitated compounds is Sr x V y 4+ V12−y 5+O31−δ·nH2)(0.37 ≤ x ≤ 1.0, 1.7 ≤ y ≤ 3.0, 0.95 ≤ δ ≤ 2.1). Polyvanadates containing the largest amount of vanadium(IV) are obtained at an initial V4+/V5+ ratio of 9 and pH 1.9. Precipitation from solutions at pH 3 takes place only in the presence of the VO2+ ion, and the highest precipitation rate is observed at V4+/V5+ = 0.11. The process is controlled by a second-order reaction on the polyvanadate surface. Under hydrothermal conditions at 180°C, Sr0.25V2O5·1.5H2O nanorods are obtained from solutions with a V4+/V5+ molar ratio of 0.1 at pH 3. The nanorods, 30–100 nm in diameter and up to 2–3 μm in length, have a layered structure with an interlayer spacing of 10.53 ± 0.08 ?.  相似文献   

3.
We study how VO2+ ions affect the composition and formation kinetics of polyvanadate precipitates in solutions with 1 ≤ pH ≤ 3 at 80–90°C. The compounds have the general formula Na2.1?x HxV y 4+ V 12?y 5+ O31?δ. nH2O (0 ≤ x ≤ 1.1, 0.2 ≤ y ≤ 2.3, 0.1 ≤ δ ≤ 1.4). The maximal vanadium(IV) concentration in the precipitates y = 2.2 and 2.3) is achieved for the V4+/V5+ ratio in the solution equal to 0.5 and 0.3 and pH of 1.7 and 3.0, respectively. The polyvanadate precipitation at pH 1.7 has a long induction period, which is not observed when V4+/V5+ > 0.02. In the solutions with pH 3.0, the precipitation occurs only when VO2+ are added. The processes are controlled by second-order reactions on the polyvanadate surface.  相似文献   

4.
Summary Binuclear complexes of dihydrocaffeic, caffeic and ferulic acids with vanadium were prepared and studied. The suggested square-pyramidal structures with catecholic-type coordination are supported by various spectroscopic, magnetic and thermogravimetric data.  相似文献   

5.
Reactions of VO(acac)2 with alkylene dithiophosphoric acids, POGOS2H, and of VOCl3 with the ammonium salts NH4(POGOS2) in 1:2 molar ratio gave the oxovanadium(IV) alkylene dithiophosphates, [VO(POGOS2)2], and monochloroxovanadium(V) alkylene dithiophosphates, [VOCl(POGOS2)2], respectively, where G = —CH2CMe2-CH2—, —CH2CEt2CH2—, —CHMeCH2CMe2— or —CMe2CMe2—. These complexes are green solids, soluble in common organic solvents and sensitive to moisture. They were characterized by elemental analysis, molecular weight and spectral studies including i.r. and n.m.r. (1H, 13C and 31P), which suggested bidentate bonding of the POGOS2 ligands to give a square pyramidal for the VIV complexes and an octahedral geometry for the VV complexes.  相似文献   

6.
The reactions of [V(2)(micro-S(2))(2)(S(2)CNR(2))(4)] (R = alkyl) with NOBF(4) produce highly-oxidised, sulfur-rich, V(iv/v) complexes, [V(2)(micro-S(2))(2)(S(2)CNR(2))(4)]BF(4), that exhibit 15-line EPR spectra and structures consistent with Class III mixed-valence behaviour.  相似文献   

7.
Quantitative reduction of V(IV)(pic) to V(III)(pic)n and then to V(II)(pic)n(1 ⩽ n ⩽3) occurs when N2O-saturated formate solutions (pH 4.2–6.3) containing V(IV) and picolinic acid (2-carboxypyridine) are irradiated. Pulse radiolysis measurements show that CO-2 reacts with picolinate only when the N-atom is protonated (k = 2.7 × 108 dm3 mol-1 s-1). Reduction of V(IV)(pic) and V(III)(pic)n is effected by the electron adduct of the protonated picolinate (picH). with rate constants at pH 4.2 of (3.5 ± 0.2) × 107 dm3 mol-1 s-1 for V(IV)(pic) and (6.9 ± 0.4) × 108 dm3 mol-1 s-1 for V(III)(pic)n. No reduction of V(II)(pic)n is observed.  相似文献   

8.
The hydrolytic precipitation of titanium(IV) in 2.0 mol dm−3 (Na, H)Cl aqueous solution at 25.0°C has been studied by measuring the free hydrogen ion concentration by a potentiometric method and the aqueous concentration of titanium(IV) by a spectrophotometric method. Under conditions where the solution is saturated with regard to precipitated titanyl(IV) hydroxide, monomeric and polycationic species, such as, TiO2+, TiO(OH)2, and [(TiO)8(OH)12]4+, were deduced as being present in the solution. A scheme for the hydrolytic precipitation equilibria has been deduced.  相似文献   

9.
In the present paper, a simple and sensitive method is proposed for vanadium(IV) determination in the presence of vanadium(V). This is based on the oxidation of vanadium(IV) present in the sample to vanadium(V) by addition of iron(III) cation, followed by a complexation reaction of iron(II) with the spectrophotometric reagent 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP). The iron(II) reacts with Br-PADAP immediately, forming a stable complex with a large molar absorptivity. The vanadium(IV) determination is possible, with a calibration sensitivity of 0.549 g ml–1, for an analytical curve of 18.8 ng ml–1 to 2.40 g ml–1, molar absorptivity of 2.80 × 104 1 mole–1 cm–1 and a detection limit of 5.5 ng ml–1. Selectivity was increased with the use of EDTA as a masking agent. The proposed method was applied for the vanadium(IV) determination in the presence of several amounts of vanadium(V). The results revealed that 200 g of vanadium(V) do not interfere with determination of 5.00 g of vanadium(IV). The precision and the accuracy obtained were satisfactory (R. S. D.<2%).  相似文献   

10.
Leaching of vanadium(IV, V) with water and a NaOH solution from ash produced in black oil combustion was studied.  相似文献   

11.
The synthesis and characterization of a V(IV) and a V(V) complex of the salicyladimine ligand system are described. The reaction of salicylaldehyde and 1,3-diaminohydroxypropane with vanadyl sulfate produced a monomer (VOL1) which, upon heating in methanol, crystallized as a V(V) complex (VO(2)L1). The reaction of 3-methoxysalicylaldehyde, 1,3-diaminohydroxypropane, and vanadyl sulfate resulted in a binuclear complex held together by hydrogen bonding (VOL2). VOL1 was determined to catalyze the epoxidation of cyclohexene better than VOL2. The synthesis and characterization of VOL1, VOL2, and VO(2)L1 are described. The role of each complex as a catalyst for the epoxidation of cyclohexene is investigated. Results indicate that the V(V) complex performs better than either of the V(IV) complexes.  相似文献   

12.
The organic extracts formed in joint extraction of vanadium(V) and vanadium(IV) with di(2-ethylhexyl) hydrogen phosphate from weakly acidic aqueous solutions were characterized by IR and electronic spectroscopy and chemical analysis.  相似文献   

13.
Jabeen  M.  Ali  S.  Shahzadi  S.  Shahid  M.  Sharma  S. K.  Qanungo  K. 《Russian Journal of General Chemistry》2017,87(3):530-538
Russian Journal of General Chemistry - Vanadium(IV) and vanadium(V) complexes 1–7 have been synthesized by the reaction of isonipecotic acid with VOSO4 · 3 H2O, VCl3(THF)3, and NH4VO3 at...  相似文献   

14.
The IR and electronic absorption spectra of di-2-ethylhexyl hydrogen phosphate (HDEHP) extracts of vanadium(V) and sulfuric acid and of vanadium(V) solutions in sulfuric acid were studied. The composition of the extractable complex was determined, and the equation of vanadium(V) extraction with HDEHP was suggested. The equilibrium constant of vanadium(V) extraction from concentrated sulfuric acid solutions was found.  相似文献   

15.
The optimum conditions of the complexation of vanadium(IV, V) with 4-(2-pyridylazo)resorcinol without and with hydrogen peroxide or hydroxylamine were found, and chemical analytical characteristics of the complexes were determined. Molar coefficients of chromaticity functions were calculated. It was demonstrated that they depend on the oxidation number of vanadium in the complex; this fact confirms the expected difference in the oxidation number of the central ion, which was found in the determination of optical characteristics. Coefficients of equations and linearity boundaries of the calibration dependences of optical and chromaticity characteristics of the complexes on the concentration of the central ion were calculated. The higher sensitivity of chromaticity measurements in comparison with spectrophotometry was demonstrated.  相似文献   

16.
A sensitive and simultaneous spectrophotometric flow injection method for the determination of vanadium(IV) and vanadium(V) is proposed. The method is based on the effect of ligands such as 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) and diphosphate on the conditional redox potential of iron(III)/iron(II) system. A four-channel flow system is assembled. In this flow system, diluted hydrochloric acid (1.0 x 10(-2) mol dm(-3)) as a carrier for standard/sample, acetate buffer (pH 5.5) as a carrier for diphosphate solution, an equimolar mixed solution of iron(III) and iron(II) and a TPTZ solution are delivered, so that the baseline absorbance can be established by forming a constant amount of iron(II)-TPTZ complex (lambda(max) = 593 nm). Vanadium(IV) and/or vanadium(V) (400 microL) and diphosphate (200 microL) solutions are simultaneously introduced into the flow system; in this system the diphosphate solution passes through a delay coil. The potential of the iron(III)/iron(II) system increases in the presence of TPTZ, and therefore vanadium(IV) is easily oxidized by iron(III) to vanadium(V) to produce an iron(II)-TPTZ complex (a positive peak for vanadium(IV) appears). On the other hand, the potential of the redox system decreases in the presence of diphosphate, so that vanadium(V) can be easily reduced by iron(II) to vanadium(IV). In this case, the amount of iron(II) decreases according to the amount of vanadium(V). As a result, the produced iron(II)-TPTZ complex decreases (a negative peak for vanadium(V) appears). In this manner, two peaks for vanadium(IV) and vanadium(V) can be alternately obtained. The limits of detection (S/N = 3) are 1.98 x 10(-7) and 2.97 x 10(-7) mol dm(-3) for vanadium(IV) and vanadium(V), respectively. The method is applied to the simultaneous determination of vanadium(IV) and vanadium(V) in commercial bottled mineral water samples.  相似文献   

17.
Well-known vanadium(IV)- and vanadium(V)-citrate complexes have been employed in transformations involving vanadium redox as well as nonredox processes. The employed complexes include K(2)[V(2)O(4)(C(6)H(6)O(7))(2)] x 4H(2)O, K(4)[V(2)O(4)(C(6)H(5)O(7))(2)] x 5.6H(2)O, K(2)[V(2)O(2)(O(2))(2)(C(6)H(6)O(7))(2)] x 2H(2)O, K(4)[V(2)O(2)(C(6)H(4)O(7))(2)] x 6H(2)O, K(3)[V(2)O(2)(C(6)H(4)O(7))(C(6)H(5)O(7))] x 7H(2)O, (NH(4))(4)[V(2)O(2)(C(6)H(4)O(7))(2)] x 2H(2)O, and (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)] x 6H(2)O. Reactions toward hydrogen peroxide at different vanadium(IV,V):H(2)O(2) ratios were crucial in delineating the routes leading to the interconversion of the various species. Equally important thermal transformations were critical in showing the linkage between pairs of dinuclear vanadium-citrate peroxo as well as nonperoxo complexes, for which the important vanadium(V)-assisted oxidative decarboxylation, leading to reduction of vanadium(V) to vanadium(IV), seemed to be a plausible pathway in place for all the cases examined. FT-IR spectroscopy and X-ray crystallography were instrumental in the identification of the arising products of all investigated reactions. Collectively, the data support the existence of chemical links between different and various structural forms of dinuclear vanadium(IV,V)-citrate complexes in aqueous media. Furthermore, in corroboration of past studies, the examined interconversions lend credence to the notion that the involved species are active participants in the respective aqueous distributions of the metal ion in the presence of the physiological ligand citrate. The concomitant significance of structure-specific species relating to soluble and potentially bioavailable forms of vanadium is mentioned.  相似文献   

18.
The reduction of oxo-chromium(V) salen with a 40–160-fold excess of oxovanadium(IV) ([H+] = 0.02–0.1 M) at 25 °C has been investigated. The observed absorbance changes fitted a pseudo-first-order process. The nature of the intermediate, final product and reaction mechanism have been proposed on the basis of reaction conditions and observed rate constants. E.s.r. data support 1:1 stoichiometry with VO2+ in a deficiency. With an excess of VO2+ a CrIII product corresponding to a two electron reduction process has been obtained. The spectral and ion exchange properties of the chromium product correspond to that of the N,N-ethylene-bis(salicylideneimine) derivative of CrIII. The rate of formation of the final product increases with decreasing [H+]. The observed kinetic behavior is consistent with a mechanism involving the formation of a CrIV—VV intermediate in an equilibrium step prior to the electron transfer step. The equilibrium constant for the formation of the intermediate has been estimated to be 11.2 ± 0.8 M–1. The second-order-rate constants for the reduction of CrV species have been estimated to be 0.14 × 102, 0.10 × 102 and 0.05 × 102 M–1 S–1 at [H+] = 0.02, 0.05 and 0.1 M respectively. Like the FeII—CrV redox couple, the VIV—CrV redox reaction also follows an inner-sphere process.  相似文献   

19.
The separation and preconcentration of vanadium (IV) and vanadium (V) using Sephadex DEAE A-25 with Eriochrome Cyanine R has been studied, based on the preconcentration of vanadium (IV) in the first step and V(V) after reduction with ascorbic acid in the second step. Factors affecting the optimum fixation of the complex were investigated. The absorbance of the solid phase is measured directly at 563 nm for V(IV), at 585 nm for V(V) and at 750 nm for both. The proposed method provides a simple and specific procedure for the separation of vanadium in natural waters. The calibration graph is linear up to 150 ng/mL, with RSD of 4.7% for V(IV) and 4.0% for V(V). The detection limits are 1.6 and 1.4 ng/mL for V(IV) and V(V), respectively.  相似文献   

20.
The separation and preconcentration of vanadium (IV) and vanadium (V) using Sephadex DEAE A-25 with Eriochrome Cyanine R has been studied, based on the preconcentration of vanadium (IV) in the first step and V(V) after reduction with ascorbic acid in the second step. Factors affecting the optimum fixation of the complex were investigated. The absorbance of the solid phase is measured directly at 563 nm for V(IV), at 585 nm for V(V) and at 750 nm for both. The proposed method provides a simple and specific procedure for the separation of vanadium in natural waters. The calibration graph is linear up to 150 ng/mL, with RSD of 4.7% for V(IV) and 4.0% for V(V). The detection limits are 1.6 and 1.4 ng/mL for V(IV) and V(V), respectively. Received: 21 November 1996 / Revised: 15 April 1997 / Accepted: 18 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号