首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(5):1451-1458
A glassy carbon electrode (GCE) was modified by electrochemically reduced graphene oxide (ERGO) for subsequent dsDNA immobilization. The interaction of cisplatin with dsDNA was studied at this modified electrode. Quantitative investigations were performed by adsorptive transfer stripping voltammetry (AdTSV) using differential pulse voltammetry (DPV). The morphology and structure of graphene oxide (GO) and ERGO modified GCEs (GO/GCE and ERGO/GCE, respectively) were characterized by UV‐vis, FT‐IR, Raman spectroscopy and cyclic voltammetry. Compared with the bare GCE and the GO/GCE, the ERGO/GCE exhibited excellent electrocatalytic activity towards the oxidation of dsDNA due to guanine and adenine groups, testified by high oxidation peak currents and decreased oxidation potentials. The interaction of micromolar concentrations of cisplatin with surface confined dsDNA was readily detected as inferred from the decrease of the voltammetric oxidation peaks of guanine and adenine. This trend was significantly greater at the ERGO/GCE compared to the GO/GCE. The interaction of cisplatin with dsDNA was also studied in solution phase by AdTSV with detection at the ERGO/GCE.  相似文献   

2.
Dopamine-melanin colloidal nanospheres (Dpa-melanin CNDs)–graphene composites-modified glassy carbon electrode (GCE) was prepared by a simple procedure and then successfully used to simultaneously determine guanine and adenine. Scanning electron microscopy (SEM) images and transmission electron microscopy (TEM) were used to characterize the morphology of the Dpa-melanin CNSs–graphene composite. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the electrode modifying process. Differential pulse voltammetry (DPV) was used to study the electrocatalytic activity toward the electrochemical oxidation of guanine and adenine. The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the simultaneous determination of guanine and adenine compared with bare GCE. The electrochemical biosensor exhibited wide linear range of 0.5 to 150 μM with detection limit of 0.05 and 0.03 μM for guanine and adenine detection (S/N?=?3), respectively. Furthermore, the biosensor showed high sensitivity, good selectivity, good reproducibility, and long-term stability to guanine and adenine detection. At the same time, the fabricated electrode was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. These results demonstrated that Dpa-melanin CNSs–graphene composite was a promising substrate for the development of high-performance electrochemical biosensor.  相似文献   

3.
A nanostructured film electrode, a multi-wall carbon nanotubes (MWNT)-modified glassy carbon electrode (GCE), is described for the simultaneous determination of guanine and adenine. The properties of the MWNT-modified GCE were investigated by scanning electron microscopy (SEM) and cyclic voltammetry. The oxidation peak currents of guanine and adenine increased significantly at the MWNT-modified GCE in contrast to those at the bare GCE. The experimental parameters were optimized and a direct electrochemical method for the simultaneous determination of guanine and adenine was proposed. Using the MWNT-modified GCE, a sensitive and direct electrochemical technique for the measurement of native DNA was also developed, and the value of (G+C)/(A+T) of HCl-digested DNA was detected.  相似文献   

4.
In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.  相似文献   

5.
We have prepared a new voltammetric sensor for guanine and adenine. It is based on a glassy carbon electrode modified with a Langmuir-Blodgett film made from tetraoxocalix[2]arene[2]triazine. The direct electro-oxidation of adenine and guanine was investigated and the results indicat that in contrast to a bare glassy carbon electrode both guanine and adenine cause an increase in the oxidation peak currents along with a negative shift of the oxidation potentials. The electrode enables the simultaneous determination of guanine and adenine using square wave voltammetry. Analysis of acid denatured calf thymus DNA was carried out and the value of (G + C)/(A + T) was correctly found to be 0.75.
Figure
Both guanine and adenine showed the increase of the oxidation peak currents on LBTOCT-GCE in contrast to that on the bare glassy carbon electrode (GCE).  相似文献   

6.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

7.
The fabrication of poly(2,6-pyridinedicarboxylic acid)/MWNTs modified glass electrode(PPDA/MWNTs/GCE) was proposed and used for individual or simultaneous determination of guanine and adenine.The performances of the PPDA/MWNTs/GCE were characterized with cyclic voltammetry(CV).The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine.Differential pulse voltammetry(DPV) was used to determine the concentration of guanine,adenine.The detection limit(S/N = 3) for guanine and adenine was 0.045μmol/L and 0.05μmol/L,respectively.The electrochemical method for the measurement of guanine and adenine in calf thymus DNA was also developed with this modified electrode and the result was satisfactory.  相似文献   

8.
以离子液体1-丁基-3-甲基咪唑六氟磷酸盐为粘合剂制备了碳糊电极,然后将氧化石墨烯滴涂到碳糊电极表面制成了一种新型的氧化石墨烯修饰碳离子液体电极。研究了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为。实验结果表明,在0.1 mol/L醋酸盐缓冲溶液中(pH4.5),鸟嘌呤和腺嘌呤在该修饰电极上具有良好的电化学行为,在2.0×10-7~1.5×10-5mol/L浓度范围内鸟嘌呤和腺嘌呤的浓度在该电极上与电化学响应信号呈良好的线性关系,相关系数分别为为0.992和0.996。信噪比为3时,检出限为1.0×10-8mol/L。  相似文献   

9.
黄克靖  余晟  王兰  甘甜  李梅 《化学学报》2012,70(6):735-740
采用滴涂法和电沉积法制备了石墨烯/铁氰化钴复合膜修饰玻碳电极. 用扫描电镜对该纳米复合膜进行了表征.用循环伏安法研究了对苯二酚(HQ)、邻苯二酚(CT)和间苯二酚(RS)在修饰电极上的电化学行为. 实验结果表明, 相对于裸玻碳电极和石墨烯修饰电极, HQ, CT 和RS 在石墨烯/铁氰化钴修饰电极上的氧化峰电流显著提高. 利用差分脉冲伏安法测定, HQ, CT 和RS 分别在1.0×10-6~1.5×10-4 mol/L, 1.0×10-6~2.0×10-4 mol/L 和3.5×10-6~2.5×10-4 mol/L浓度范围内与氧化峰电流呈良好的线性关系, 相关系数分别为0.991, 0.993 和0.992. 信噪比为3 时, HQ, CT 和RS 检出限分别为2.0×10-7, 2.1×10-7 和3.5×10-7 mol/L. 将该方法用于水样分析, 回收率为95.6%~106.1%.  相似文献   

10.
夏雅淋  邓春艳  向娟 《电化学》2012,18(4):365-370
利用掺硼碳纳米管(BCNTs)/GC电极研究了鸟嘌呤(G)和腺嘌呤(A)的电化学氧化行为. 与GC和CNTs/GC电极相比,BCNTs/GC电极具有更强的电催化活性,且响应电流明显增加. 两混合样品在BCNTs/GC电极上的氧化峰间隔较大,可实现对A和G的同时检测.  相似文献   

11.
运用循环伏安法与线性扫描伏安法研究了阿奇霉素在多壁碳纳米管修饰玻碳电极上的电化学行为,建立了一种直接测定阿奇霉素的电化学分析方法。结果表明,与裸玻碳电极相比,多壁碳纳米管修饰电极能显著提高阿奇霉素的氧化峰电流,阿奇霉素的电极过程完全不可逆,存在典型的吸附特性。在优化的实验条件下,氧化峰电流与阿奇霉素浓度在3.0×10-7~2.5×10-5 mol/L和2.5×10-5~5.0×10-4 mol/L范围内呈现良好的线性关系,检出限为1.0×10-7 mol/L。  相似文献   

12.
Ye D  Luo L  Ding Y  Liu B  Liu X 《The Analyst》2012,137(12):2840-2845
A novel Co(3)O(4) nanoparticles-decorated graphene (GR) composite was synthesized by electro-deposition and characterized by scanning electron micrographs, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. Then, amperometric biosensors based on a Co(3)O(4) nanoparticles-decorated GR composite modified glassy carbon electrode (GCE) were developed for the sensitive determination of L-tryptophan (Trp). The direct electrooxidation behaviors of Trp on the Co(3)O(4)/GR/Nafion/GCE were carefully investigated by cyclic voltammetry and square wave voltammetry. The results indicated that Trp showed an increase of the oxidation peak current with a negative shift of the oxidation peak potential compared with that on the bare GCE. Under optimum conditions, the proposed biosensor can be applied to the quantification analysis of Trp with a wide linear range covering 0.05-10 μM (R = 0.996) and a low detection limit of 0.01 μM. The experimental results also showed that the sensor exhibited good reproducibility, long-term stability as well as high selectivity. Moreover, the novel biosensor for the detection of Trp in a real amino acid sample with satisfactory results has been proved.  相似文献   

13.
利用循环伏安法将L-苏氨酸聚合修饰在玻碳电极表面, 制成聚L-苏氨酸修饰电极. 实验表明, 该电极对多巴胺和肾上腺素都有较好的催化氧化效果. 运用循环伏安法详细研究了修饰电极的电化学性质. 在pH 2.5的磷酸盐缓冲溶液(PBS)中, 肾上腺素的电子传递系数为0.51, 表观反应速率常数为1.33 s-1; 在pH 7.5的PBS中, 多巴胺在电极上产生一对氧化还原峰, 多巴胺在电极上的电子传递系数为0.60, 表观反应速率常数为0.92 s-1. 该修饰电极对多巴胺和肾上腺素能够进行同时测定, 还原峰电流与多巴胺和肾上腺素浓度分别在1.0×10-6-5.0×10-4 mol·L-1和3.0×10-6-1.0×10-4 mol·L-1范围内呈现良好的线性关系.  相似文献   

14.
An electrochemical sensor for simultaneous determination of dopamine (DA), uric acid (UA), guanine (G), and adenine (A) has been constructed by copolymerizing melamine monomer and Ag ions on a glassy carbon electrode (GCE) with cyclic voltammetry. The poly-melamine and nano Ag formed a hybridized film on the surface of the GCE. The morphology of the film was characterized by scanning electron microscope. The electrochemical and electrocatalytic properties of this film were characterized by cyclic voltammetry, linear sweep voltammetry, and square wave voltammetry (SWV). In 0.1 M phosphate buffer solution (pH 4.5), the modified electrode resolved the electrochemical response of DA, UA, G, and A into four well-defined voltammetric oxidation peaks by SWV; the oxidation peak current of DA, UA, G, and A increased 13-, 6-, 7-, and 9-fold, respectively, compared with those at the bare GCE and the SWV peak currents of DA, UA, G, and A with linear concentrations in the ranges of 0.1–50, 0.1–50, 0.1–50, and 0.1–60 μM, respectively. Based on this, a method for simultaneous determination of these species in mixture was setup. The detection limits were 10 nM for DA, 100 nM for UA, 8 nM for G, and 8 nM for A.  相似文献   

15.
A novel multiwalled nanotubes (MWNTs)/Cerium(III) 12 ‐ tungstophosphoric acid (CePW) nanocomposite film glassy carbon electrode was prepared in this paper. Electrochemical behaviors of the CePW/MWNTs modified electrode were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This modified electrode brought new capabilities for electrochemical devices by combining the advantages of carbon nanotubes, rare‐earth, and heteropoly‐acids. The results demonstrated that the CePW/MWNTs modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine in 0.1 M PBS (pH 7.0). The experimental parameters were optimized and a direct electrochemical method for the simultaneous determination of guanine and adenine was proposed. The detection limit (S/N=3) for guanine and adenine was 2.0×10?8 M and 3.0×10?8 M, respectively. Further, the acid‐denatured calf thymus DNA was also detected and the result was satisfied.  相似文献   

16.
A large mesoporous carbon modified glassy carbon electrode (LMC/GCE) was prepared. The morphology and structure of the LMC were characterized. The LMC/GCE was used to investigate the electrochemical behaviors of metabolites of purine nucleotide, uric acid (UA), xanthine (XA) and hypoxanthine (HX). The LMC/GCE exhibited high electrocatalytic activity towards the three compounds when compared with those obtained at the GCE. Furthermore, the LMC/GCE realized simultaneous determination of UA, XA and HX at a physiological pH of 7.0 with wide linear range and low detection limit. The electrocatalytic activity of the LMC/GCE towards guanine (G) and adenine (A) was also investigated.  相似文献   

17.
采用电化学沉积法制备了纳米金修饰玻碳电极,并用循环伏安法和电化学阻抗法进行了表征,以此建立了一种直接测定鸟嘌呤的电分析方法。在磷酸盐缓冲溶液(pH 6.0)中,研究了鸟嘌呤在纳米金修饰电极上的电化学行为,实验结果表明,纳米金修饰电极可以增强鸟嘌呤在电极表面的吸附,并加快鸟嘌呤在电极表面的电子传输,使其电化学信号明显增大,检测灵敏度大大提高,该修饰电极对鸟嘌呤表现出良好的电催化性能。在优化实验条件下对鸟嘌呤进行测定,方法的线性范围为8.0×10-7~6.0×10-5mol/L,检出限为1.0×10-8mol/L,在鸟嘌呤浓度为1.0×10-5mol/L时测得RSD(n=10)为2.5%。  相似文献   

18.
This paper describes the simultaneous determination of ascorbic acid (AA), norepinephrine (NE) and uric acid (UA) using a graphene modified glassy carbon electrode (GME) in pH 4.0 phosphate buffer solution. The electrochemical behaviors of AA, NE and UA at a bare glassy carbon electrode (GCE) and the GME were studied by cyclic voltammetry. Bare GCE failed to resolve the voltammetric signals of AA, NE and UA in a mixture, whereas the GME not only resolved their voltammetric signals, but also exhibited excellent electrocatalytic activity towards their electrochemical oxidation. The oxidation peak currents of AA, NE and UA were linearly proportional to their concentrations over the range of 1.0.0–1000.0, 0.6–45.0 and 1.0–100.0 μM, respectively, and their detection limits were 1.2, 0.10 and 0.60 μM, respectively, The modified electrode is of excellent sensitivity and selectivity, and has been satisfactorily used for the simultaneous determination of AA, NE and UA in their ternary mixture.  相似文献   

19.
用滴涂法和电化学聚合法制备了聚中性红/纳米二氧化硅修饰电极(PNR/nano-SiO2/GCE),并用循环伏安法和交流阻抗法研究了修饰电极表面的电化学行为。实验表明,该修饰电极对抗坏血酸(AA)表现出良好的电催化氧化性能,探讨了复合修饰电极协同增效作用的机理。用线性扫描伏安法研究了AA浓度与峰电流之间线性关系,在pH2.0的磷酸盐缓冲溶液中,AA氧化峰电流在1.8×10-6~5.0×10-3mol/L浓度范围内呈良好的线性关系,检出限为5.4×10-7mol/L(S/N=3)。该修饰电极制备简单,可用于药品及果蔬食品中抗坏血酸的直接测定。  相似文献   

20.
基于电化学沉积法制备了纳米金/十二烷基苯磺酸钠修饰玻碳电极(Nano-Au/SDBS/GCE),并采用扫描电子显微镜、X-射线光电子能谱和电化学方法进行表征。研究了对乙酰氨基酚在Nano-Au/SDBS/GCE上的伏安行为,结果表明,对乙酰氨基酚由在裸玻碳电极上的不可逆氧化过程变为准可逆过程,氧化峰峰电位由0.60 V负移至0.50 V,且在0.42 V处产生一个新的还原峰,表明nano-Au/SDBS膜能催化对乙酰氨基酚的电化学反应。在优化条件下,氧化峰峰电流与对乙酰氨基酚浓度在1.0×10-6mol/L~9.0×10-6mol.L–1和1.0×10-5~1.0×10-4mol.L–1间有良好的线性关系,检出限为8.0×10-7mol.L–1(S/N=3)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号