首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this article, synthesis of a palladium(II) complex with 2-mercaptothiazoline in aqueous solution is presented. Composition of the complex was defined as 1?:?2 (metal?:?ligand). Infrared and solid-state nuclear magnetic resonance indicate ligand coordination to Pd(II) through nitrogen of thiazole ring and sulfur of thiol. ESI–QTOF–mass spectrometric analysis shows primarily the dimeric form in solution. An antibiogram assay of the complex was performed by the disc diffusion method. The compound did not show antibacterial activity against the considered bacterial cells in the tested concentrations.  相似文献   

3.
Two novel [2+2] metallo‐assemblies based on a guanosine‐substituted terpyridine ligand ( 1 ) coordinated to palladium(II) ( 2 a ) and platinum(II) ( 2 b ) are reported. These supramolecular assemblies have been fully characterized by NMR spectroscopy, ESI mass spectrometry and elemental analyses. The palladium(II) complex ( 2 a ) has also been characterized by single crystal X‐ray diffraction studies confirming that the system is a [2+2] metallo‐rectangle in the solid state. The stabilities of these [2+2] assemblies in solution have been confirmed by DOSY studies as well as by variable temperature 1H NMR spectroscopy. The ability of these dinuclear complexes to interact with quadruplex and duplex DNA was investigated by fluorescent intercalator displacement (FID) assays, fluorescence resonance energy transfer (FRET) melting studies, and electrospray mass spectrometry (ESI‐MS). These studies have shown that both these assemblies interact selectively with quadruplex DNA (human telomeric DNA and the G‐rich promoter region of c‐myc oncogene) over duplex DNA, and are able to induce dimerization of parallel G‐quadruplex structures.  相似文献   

4.
Chemical and spectroscopic studies of a new palladium(II) N-acetyl-L-cysteine complex are described. Elemental analyses for the solid complex are consistent with the formula [Pd(C5H8NO3S)2]?·?H2O or [Pd(NAC)2]?·?H2O. Solid-state 13C nuclear magnetic resonance (NMR), UV–Visible (UV–Vis) and infrared (IR) spectroscopic analyses are consistent with coordination of the ligand to palladium(II) through the nitrogen and sulfur atoms in a square-planar geometry. Thermogravimetric and differential thermal analyses confirmed the composition; final residue was identified as metallic palladium.  相似文献   

5.
Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with a potentially tridentate Schiff base, formed by condensation of 2-amino-3-carboxyethyl-4,5-dimethylthiophene with salicylaldehyde were synthesized and characterized on the basis of elemental analyses, molar conductance values, magnetic susceptibility measurements, UV-vis, IR, EPR and NMR spectral data, wherever possible and applicable. Spectral studies reveal that the free ligand exists in a bifunctionally hydrogen bonded manner and coordinates to the metal ion in a tridentate fashion through the deprotonated phenolate oxygen, azomethine nitrogen and ester carbonyl group. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry has been proposed for each complex. The EPR spectral data of the Cu(II) complex showed that the metal-ligand bonds have considerable covalent character. The Ni(II) complex has undergone facile transesterification reaction when refluxed in methanol for a lengthy period. X-ray diffraction studies of Cu(II) complex showed that the complex has an orthorhombic crystal lattice. In view of the biological activity of thiophene derivatives, the ligand and the complexes were subjected to antibacterial screening. It has been observed that the antibacterial activity of the ligand increased on chelation with metal ion.  相似文献   

6.
Synthesis and characterization of a new Pt(II) complex with the amino acid L-alliin (S-allyl-L-cysteine sulfoxide, C6H11NO3S) are described. Elemental and mass spectrometric analyses of the solid complex are consistent with [PtCl2(alliin)], or [PtCl2(C6H11NO3S)]. 13C nuclear magnetic resonance (NMR), [1H–15N] two dimensional (2D) NMR and infrared spectroscopy indicate coordination of the ligand to Pt(II) through the N and S atoms. The complex is very soluble in dimethyl sulfoxide. Biological analysis for evaluation of a potential cytotoxic effect of the complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented moderate cytotoxic activity, inducing about 40% cell death at a concentration of 400 μmol ·?L?1.  相似文献   

7.
The coordination chemistry of N′-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)methylene)-2-hydroxybenzohydrazide with copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), palladium(II), iron(III), ruthenium(III), uranyl(VI), and titanium(IV) has been studied. The ligand and its complexes was characterized by elemental and thermal analyses, magnetic moments and conductivity measurements as well as spectroscopic techniques such as infrared, mass spectra, nuclear magnetic resonance, electron spin resonance and electronic absorption spectra. The spectral data showed that the ligand is monobasic tridentate coordinated via the enolic carbonyl oxygen of the hydrazide moiety, azomethine nitrogen and pyrazolone oxygen atoms.  相似文献   

8.
A hydrazone ligand (HL) containing the thiophene moiety has been prepared via condensation of thiophene-2-carbohydrazide with 1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carbaldehyde. The complexes of copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), palladium(II), iron(III), ruthenium(III), uranyl(VI), and titanium(IV) with the ligand were prepared in good yield from the reaction of the ligand with the corresponding metal salts. The ligand and complexes were characterized using infrared, mass spectra, nuclear magnetic resonance, electronic absorption spectra, electron spin resonance, and magnetic moment measurements as well as elemental and thermal analyses. The results showed that the complexes are enolic by nature, whilst the ratio between the metal ion and the ligand depends on the acidity of the metallic ions and their oxidation numbers.  相似文献   

9.
A new series of transition-metal complexes of Schiff base ligand containing the amino mercapto triazole moiety ( HL ) was prepared. The Schiff base and its metal complexes were elucidated by different spectroscopic techniques (infrared [IR], 1H nuclear magnetic resonance, UV–Visible, mass, and electron spin resonance [ESR]), and magnetic moment and thermal studies. Quantum chemical calculations have been carried out to study the structure of the ligand and some of its complexes. The IR spectra showed that the ligand is chelated with the metal ion in a neutral, tridentate, and bidentate manner using NOS and NO donors in complexes 1 – 6 , 10–12 , and 7 and 8 , respectively, whereas it behaves in a monobasic tridentate fashion using NOS donor sites in copper(II) nitrate complex ( 9 ). The magnetic moment and electronic spectra data revealed octahedral and square pyramidal geometries for complexes 2 , 11 , 12 , and 5 – 8 and 10 , respectively. However, the other complexes were found to have tetrahedral ( 4 ), trigonal bipyramidal ( 1 and 3 ), and square planar ( 9 ) structures. Thermal studies revealed that the chelates with different crystallized solvents undergo different types of interactions and the decomposition pathway ended with the formation of metal oxygen (MO) and metal sulfur (MS) as final products. The ESR spectrum of copper(II) complex 10 is axial in nature with hyperfine splitting with 2B1g as a ground state. By contrast, complexes 7 and 8 undergo distortion around the Cu(II) center, affording rhombic ESR spectra. The HL ligand and some of its complexes were screened against two bacterial species. Data showed that complex 12 demonstrated a better antibacterial activity than HL ligand and other chelates.  相似文献   

10.
Insertion of molecular oxygen into a palladium(II) hydride bond to form an (eta1-hydroperoxo)palladium(II) complex is reported. The hydroperoxo palladium(II) product has been crystallographically characterized. A second-order rate law (first-order in palladium and first-order in oxygen) is observed for the reaction and a large kinetic isotope effect implicates Pd-H bond cleavage in the rate-determining step. The results of studies with radical inhibitors and light suggest that the reaction does not proceed by a radical chain mechanism.  相似文献   

11.
Transition metal complexes containing an amoxicillin-based Schiff base (H2L, 3 ) obtained from the condensation of amoxicillin 1 with salicylaldehyde 2 were prepared. Spectroscopic and physicochemical techniques, namely, UV–visible, Fourier-transform infrared spectroscopy, 1H NMR, electron paramagnetic resonance, transmission electron microscopy, mass spectrometry, magnetic susceptibility, molar conductance, density functional theory (DFT) calculations, together with elemental and thermal analyses were used to characterize the synthesized complexes. Based on these studies, the general formulae [ML(H2O)3], where M = Mn 4 , Ni 5 , Zn 6 , and [ML(H2O)], where M = Cu 7 , Ag 8 , were proposed for the complexes. The amoxicillin-based Schiff base ligand behaved as a dianionic O3-tridentate chelating agent. DFT studies and magnetic and spectral data revealed octahedral geometries for Mn, Ni, and Zn atoms and distorted tetrahedral geometries for Cu(II) and Ag(II) complexes. Synthesized compounds were tested for antibacterial activity by both agar disk diffusion method and the minimum inhibitory concentration. in vitro bacterial viability revealed that complex 5 had similar antibacterial activity as 1 against Staphylococcus aureus and Staphylococcus epidermidis, whereas Pseudomonas aeruginosa, resistant to amoxicillin, was sensitive to complex 8 . The antibacterial activity of complex 8 could be attributed to its greater catalytic activity as shown by DFT calculations. Toxicity bioassay of the tested compounds showed LC50 values > 1000 ppm, indicating their nontoxicity against brine shrimp nauplii (Artemia salina).  相似文献   

12.
New tetradentate N(2)O(2) donor Schiff bases and their mononuclear Co(II), Ni(II), Cu(II), and Pd(II) complexes were synthesized and characterized extensively by IR, (1)H-, (13)C-NMR, mass, ESR, conductivity measurements, elemental and thermal analysis. Specifically the magnetic and electronic spectral measurements demonstrate the octahedral structures of cobalt(II), nickel(II) complexes and square planar geometries of copper(II), palladium(II) complexes. All the ligands and complexes were screened for their in vitro antibacterial activity against two gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and two gram-negative bacteria (Escherichia coli, Klebsiella pneumonia). In this study, Pd(II) complexes exhibited potent antibacterial activity against B. subtilis, S. aureus whereas other metal complexes also exerted good activity towards all tested strains even than standard drugs streptomycin and ampicillin.  相似文献   

13.
Complexes of Pt(II), Pd(II), and Ni(II) with the condensation derivative of 2-(diphenylphosphino)benzaldehyde and semioxamazide were synthesized, characterized, and their antimicrobial activity was evaluated. The ligand and the complexes were characterized by spectroscopic methods with the particular accent on NMR spectral analysis. For the palladium(II) complex, the crystal structure was determined by X-ray analysis. In all the complexes the ligand is coordinated as a tridentate via a P, N, O donor set. The Pd(II) and Pt(II) complexes have a square planar geometry, whereas the geometry of the Ni(II) complex is tetrahedral. The ligand showed antibacterial and antifungal activity, which was enhanced upon complexation.  相似文献   

14.
本文研究了双(正-辛基硫醚)乙烷[C8H17S(CH2)2SC8H17]对钯的萃取;讨论了盐酸浓度、稀释剂对萃取钯的影响;并且通过等克分子系列法、饱和法、Asmus法、固态络合物的化学分析及核磁共振谱,红外光谱的研究,确定了萃合物的组成和结构。  相似文献   

15.
Summary. Complexes of Pt(II), Pd(II), and Ni(II) with the condensation derivative of 2-(diphenylphosphino)benzaldehyde and semioxamazide were synthesized, characterized, and their antimicrobial activity was evaluated. The ligand and the complexes were characterized by spectroscopic methods with the particular accent on NMR spectral analysis. For the palladium(II) complex, the crystal structure was determined by X-ray analysis. In all the complexes the ligand is coordinated as a tridentate via a P, N, O donor set. The Pd(II) and Pt(II) complexes have a square planar geometry, whereas the geometry of the Ni(II) complex is tetrahedral. The ligand showed antibacterial and antifungal activity, which was enhanced upon complexation.  相似文献   

16.
The catalytic oxidation of iron(II) with oxygen occurs along with an autocatalytic reaction between palladium(II) tetraaqua complex and iron(II) aqua complex in an oxygen atmosphere. The reaction is catalyzed by a compound of palladium in an intermediate oxidation state, presumably by a small palladium cluster formed in the course of the reduction of palladium(II) tetraaqua complex with iron(II) aqua complex.  相似文献   

17.
In the present research work, four new 14-membered tetraazamacrocylic complexes of Cobalt(II), Nickel(II), Copper(II) and Zinc(II) with (1E,14E)-8,8,17,17-tetramethyl-2,5,11,14-tetraazatricyclo[13.3.1.16,10]icosa-1,5,10,14-tetraene were synthesized using the template methodology that leads to the formation of a complex of type [MLX2] in which L is a macrocyclic ligand derived from ethylenediamine (ED) and 5,5-dimethylcyclohexanedione (DCH) and X = Cl/CH3COO. Spectroscopic, physical, and analytical characterization of complexes was carried out with the assistance of infra-red, nuclear magnetic resonance, electron spin resonance, Ultraviolet-visible, powder X-Ray diffraction, electron spray ionization - mass spectroscopy (ESI-MS), thermogravimetric analysis, magnetic susceptibilities, and carbon hydrogen nitrogen analysis. The information regarding the monomeric and nonelectrolytic behavior was elucidated from ESI-MS and molar conductance values. Powder X-Ray diffractogram studies point toward the crystalline or amorphous nature of the complexes. All the compounds exhibited the nonelectrolytic nature. Semiempirical calculations were performed using Gaussian 09 software and quantum chemical parameters were determined. Newly designed macrocyclic complexes were examined for their antifungal and antibacterial potency by the Agar well diffusion method. In-vitro DNA binding studies were carried out in order to understand the extent and nature of binding shown by the complexes with the DNA. In addition to this, in-silico absorption distribution metabolism excretion toxicity studies were also carried out for the interpretation of drug-like properties in the newly synthesized complexes.  相似文献   

18.
A new platinum(II) complex with methionine sulfoxide was synthesized and characterized by chemical and spectroscopic techniques. Elemental analyses, mass spectrometric measurements (electrospray ionization quadrupole time-of-flight mass spectrometry), and thermal analyses of the solid compound fit the composition [(C5H10NO3S)Pt(µ-Cl)2Pt(C5H10NO3S)]?·?2.5H2O. Infrared spectroscopic data indicate coordination of the ligand to Pt(II) through the nitrogen of NH2 and the sulfur of the S=O group. 1H-15N nuclear magnetic resonance spectroscopic data confirm nitrogen coordination. Antibacterial activities were evaluated by antibiogram assays using the disc diffusion method. The platinum(II) complex showed antibacterial activity against Gram-negative Pseudomonas aeruginosa bacterial cells.  相似文献   

19.
A new series of metal complexes containing Co(II), Pd(II), Fe(III) chloride and Cu(II) salts (chloride, bromide, sulphate and perchlorate) have been prepared with Schiff base ligand ( HL ). The synthesized compounds were elucidated using elemental analyses, spectral techniques, molar conductance, magnetic measurements and thermogravimetric studies. The analytical data established (1 M:1 L) stoichiometry for complexes ( 1 ), ( 2 ), ( 4 ), ( 6 ) and ( 7 ) as well as (1 M:2 L) and (2 M:3 L) stoichiometry for complexes ( 5 ) and ( 3 ), respectively. As a result, the ligand HL coordinates in complexes ( 1 ), ( 2 ), ( 4 ), ( 6 ) as a monobasic tridentate ONN moiety via the oxygen atom of the deprotonated phenolic OH, the nitrogen atoms of the azomethine and the imine group in pyrazolopyridine ring. While, it behaves as a neutral bidentate in complexes ( 3 , 7 ), chelates via oxygen and nitrogen atoms of enolic OH and azomethine groups. Also, in complex ( 5 ) Cu2+ ion binds via NO sits of two ligand molecules in its monobasic and neutral forms. The magnetic moment and electronic spectral data proposed octahedral structure for complexes ( 2 , 3 and 7 ) as well as triagonal bipyramidal and square pyramidal geometry for complexes ( 1 and 4 ), while, chelates ( 5 ) and ( 6 ) possess square planar geometry. TG/DTG studies confirmed the chemical formula for these complexes and established the thermal decomposition processes ended with the formation of metal or metal oxides contaminated with carbon residue. An axial electron spin resonance spectra were suggested for Cu(II) complexes pointing to 2B1g as a ground state with hyperfine structure for complex ( 4 ). In vitro antibacterial and antioxidant activities were performed for HL ligand and its metal complexes. The biological studies indicate that complex ( 3 ) has better antibacterial activity compared to the ligand and the other complexes.  相似文献   

20.
A new Schiff-base ligand N-(2'-pyrrylmethylidene)2-aminopyrimidine derived from the reaction of 2-amino pyrimidine and pyrrol-2-carboxaldehyde and its nickel(II), copper(II) and zinc(II) complexes have been synthesised and characterised on the basis of elemental analysis, molar conductance, infrared, electronic and proton nuclear magnetic resonance (1H-NMR) and magnetic susceptibility data. The ligand and its complexes when screened for antibacterial activity against bacterial species such as, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. In all cases, the activity substantially increased on complexation with metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号