首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the behavior of a model methane clathrate cage under high hydrostatic pressures. The methane clathrate cage consists of 20 water molecules forming 12 pentagonal faces, with a methane molecule positioned at the cage center. The clathrate compound is located inside a fullerene-type arrangement of 180 He atoms to simulate an isotropic pressure. Different pressures are simulated by decreasing the radius of the He array. The minimal energy of the total system for each configuration is calculated by using density functional theory. The variation of the energy with the volume of the imprisoned clathrate cage leads to the proposal of a (cold) equation of state in the pressure range [0,60] GPa. The elastic parameters of the state equation are found in agreement with equivalent quantities measured on clathrates in their sI conformation. Special attention is given to the distribution of the confined atoms and the eventual symmetry lost from the clathrate cage with the pressure, as the clathrate cage constitutes a basic structural unit of the crystal. Finally, the strengths and limitations of the model are discussed.  相似文献   

2.
We have extended the van der Waals and Platteeuw theory to treat multiple occupancy of a single cage of clathrate hydrates, which has not been taken into account in the original theory but has been experimentally confirmed as a real entity. We propose a simple way to calculate the free energy of multiple cage occupancy and apply it to argon clathrate structure II in which a larger cage can be occupied by two argon atoms. The chemical potential of argon is calculated treating it as an imperfect gas, which is crucial to predict accurate pressure dependence of double occupancy expected at high pressure. It is found that double occupancy dominates over single occupancy when the guest pressure in equilibrium with the clathrate hydrate exceeds 270 MPa.  相似文献   

3.
The theory of β-hydroquinone clathrate formation is considered, taking into account the interaction between the “guests”. The investigation is carried out by a cluster approximation. It is shown that the concentration of gas in the clathrate may vary from 0.34 to 0.998 and that two concentrations – stable and metastable – can exist simultaneously  相似文献   

4.
Ionic clathrate hydrates are known to be formed by the enclathration of hydrophobic cations or anions into confined cages and the incorporation of counterions into the water framework. As the ionic clathrate hydrates are considered for their potential applicability in various fields, including those that involve solid electrolytes, gas separation, and gas storage, numerous studies of the ionic clathrate hydrates have been reported. This review concentrates on the physicochemical properties of the ionic clathrate hydrates and the notable characteristics of these materials regarding their potential application are addressed.  相似文献   

5.
6.
A new predictive computational method for classifying clathrate hydrate promoter molecules is presented, based on the interaction energies between potential promoters and the water networks of sII and sH clathrates. The motivation for this work is identifying promoters for storing hydrogen compactly in clathrate hydrates. As a first step towards achieving this goal, we have developed a general method aimed at distinguishing between molecules that form sII clathrate hydrates and molecules that can-together with a weakly interacting help gas-form sH clathrate hydrates. The new computational method calculates differences in estimated formation energies of the sII and the sH clathrate hydrate. Model interaction potentials have been used, including the electrostatic interactions with newly calculated partial charges for all the considered potential promoter molecules. The methodology can discriminate between the clathrate structure types (sII or sH) formed by each potential promoter with good selectivity, i.e., better than achieved with a simple van der Waals diameter criterion.  相似文献   

7.
The review considers current works on clathrate hydrogen compounds, aimed at creating hydrogen accumulators suitable for practical application. Analysis of published data showed that clathrate hydrates formed by pure hydrogen are unsuitable for this purpose in view of their fairly low limiting hydrogen content and the necessity for their synthesis of extremely high pressures (>100 MPa) that are still industrially unfeasible. The possibilities for hydrogen storage in double (including auxiliary guest molecules along with hydrogen) clathrate hydrates are considered. It is concluded from published data that sorbents on the basis of the so-called “metal-organic frameworks” (MOFs) with a pore size of 1–2 nm hold a greater promise for hydrogen storage at temperatures of about 100 and moderately (up to 10 MPa) high pressures, but the development of all the considered methods of hydrogen storage has not yet grown out of laboratory experiments.  相似文献   

8.
On dehydration in vacuo quaternary ammonium halides show two entirely different types of behavior. Type A salts give first a liquid (4–6 H2O) of very low vapor pressure, then a series of crystalline framework clathrates (2–4 H2O), then very stable monohydrates with water—anion dimeric clusters. Type B salts give first a hypobarogenic clathrate (solid at reduced pressure, liquid at 760 torr), then crystalline monohydrates, which, when the pressure is returned to 760 torr, disproportionate into anhydrous salt and same hypobarogenic clathrate. Liquid—solid equilibria for type A at 760 torr is always between framework clathrate and saturated solution (or possibly liquid clathrate) and for type B is between anhydrous salt and hypobarogenic clathrate. Dissolution in water is exothermic for type A salts and endothermic for type B. Examples: type A, choline fluoride, tetramethylammonium fluoride, tetraethylammonium fluoride and chloride, tetrapropylammonium fluoride and chloride; type B, choline chloride, bromide, and iodide, tetramethylammonium chloride and bromide, tetraethylammonium bromide, tetrapropylammonium bromide. Type A behavior is favored by larger cation and smaller (more electronegative) anion, and type B by smaller cation and larger (less electronegative) anion.  相似文献   

9.
A molecular dynamics simulation of a three-phase system including a gas clathrate, liquid water, and a gas was carried out at 298 K and high pressure in order to investigate the growth mechanism of the clathrate from a dilute aqueous gas solution. The simulation indicated that the clathrate grew on interfaces between the clathrate and the liquid water, after transfer of the gas molecules from the gas phase to the interfaces. The results suggest a two-step process for growth: first, gas molecules are arranged at cage sites, and second, H(2)O molecules are ordered near the gas molecules. The results also suggest that only the H(2)O molecules, which are surrounded or sandwiched by the gas molecules, form the stable polygons that constitute the cages of the clathrate. In addition, the growth of the clathrate from a concentrated aqueous gas solution was also simulated, and the results suggested a growth mechanism in which many H(2)O and gas molecules correctively form the structure of the clathrate. The clathrate grown from the concentrated solution contained some empty cages, whereas the formation of empty cages was not observed during the growth from the dilute solution. The results obtained by both simulations are compared with the results of an experimental study, and the growth mechanism of the clathrate in a real system is discussed.  相似文献   

10.
11.
A new silicon clathrate compound with a composition of Ba8Si46 was prepared under high-pressure and high-temperature conditions. The compound was isomorphous with Na8Si46 and became a superconductor with a transition temperature of 8.0 K. Barium atoms occupy all of the Si20 and Si24 cages of the clathrate structure. This is the first clathrate superconductor obtained as a bulk phase.  相似文献   

12.
The thermodynamic stability of a clathrate hydrate encaging non-spherical molecules has been investigated by examining the free energy of cage occupancy. In the present study, a generalized van der Waals and Platteeuw theory is extended to treat the rotational motion of guest molecules in clathrate hydrate cages. The vibrational free energy of both guest and host molecules is divided into harmonic and anharmonic contributions. The anharmonic free energy associated with the non-spherical nature of the guest molecules is evaluated as a perturbation from the spherical guest. Predicted thermodynamic properties are compared with measured values. It is shown that this anharmonic contribution is important in the free energy of the hindered rotation of the guests.  相似文献   

13.
14.
A hydrogen-encapsulated inorganic clathrate, which is stable at ambient temperature and pressure, has been prepared in high yield. Na5.5(H2)2.15Si46 is a sodium-deficient, hydrogen-encapsulated, type I silicon clathrate. It was prepared by the reaction between NaSi and NH4Br under dynamic vacuum at 300 degrees C. The Rietveld refinement of the powder X-ray diffraction data is consistent with the clathrate type I structure. The type I clathrate structure has two types of cages where the guest species, in this case Na and H2, can reside: a large cage composed of 24 Si, in which the guest resides in the 6d crystallographic position, and a smaller one composed of 20 Si, in which the guest occupies the 2a position. Solid-state 23Na, 1H, and 29Si MAS NMR confirmed the presence of both sodium and hydrogen in the clathrate cages. 23Na NMR shows that sodium completely fills the small cage and is deficient in the larger cage. The 1H NMR spectrum shows a pattern consistent with mobile hydrogen in the large cage. 29Si NMR spectrum is consistent with phase pure type I clathrate framework. Elemental analysis is consistent with the stoichiometry Na5.5(H2.15)2Si46. The sodium occupancy was also examined using spherical aberration (Cs) corrected scanning transmission electron microscopy (STEM). The high-angle annular dark-field (HAADF) STEM experimental and simulated images indicated that the Na occupancy of the large cage, 6d sites, is less than 2/3, consistent with the NMR and elemental analysis.  相似文献   

15.
A new clathrate type has been discovered in the Ba/Cu/Zn/P system. The crystal structure of the Ba8M 24P28+δ (M =Cu/Zn) clathrate is composed of the pentagonal dodecahedra common to clathrates along with a unique 22‐vertex polyhedron with two hexagonal faces capped by additional partially occupied phosphorus sites. This is the first example of a clathrate compound where the framework atoms are not in tetrahedral or trigonal‐pyramidal coordination. In Ba8M 24P28+δ a majority of the framework atoms are five‐ and six‐coordinated, a feature more common to electron‐rich intermetallics. The crystal structure of this new clathrate was determined by a combination of X‐ray and neutron diffraction and was confirmed with solid‐state 31P NMR spectroscopy. Based on chemical bonding analysis, the driving force for the formation of this new clathrate is the excess of electrons generated by a high concentration of Zn atoms in the framework. The rattling of guest atoms in the large cages results in a very low thermal conductivity, a unique feature of the clathrate family of compounds.  相似文献   

16.
The Raman spectra of H(2) and HD molecules in simple hydrogen and binary hydrogen-tetrahydrofuran clathrate hydrates have been measured at temperatures as low as 20 K. The rotational bands of trapped molecules in simple and binary hydrates have been analyzed, and the contributions originating from hydrogen molecules in the large cages have been separated from those in the small cages. A theoretical model, consisting in rigid cages enclosing interacting hydrogen molecules, has been exploited to calculate, on the basis of quantum mechanics, the Raman intensity of the rotational transitions for up to two interacting molecules in one cage. A comparison with experiment leads to a clear interpretation of sidebands appearing in the Raman rotational lines. The quantitative agreement between theory and experiment obtained in some cases clarifies the importance of the choice of the interaction potential, and of the proton disorder in the clathrate crystal.  相似文献   

17.
It has long been known that crystalline hydrates are formed by many simple gases that do not interact strongly with water, and in most cases the gas molecules or atoms occupy 'cages' formed by a framework of water molecules. The majority of these gas hydrates adopt one of two cubic cage structures and are called clathrate hydrates. Notable exceptions are hydrogen and helium which form 'exotic' hydrates with structures based on ice structures, rather than clathrate hydrates, even at low pressures. Clathrate hydrates have been extensively studied because they occur widely in nature, have important industrial applications, and provide insight into water-guest hydrophobic interactions. Until recently, the expectation-based on calculations-had been that all clathrate hydrates were dissociated into ice and gas by the application of pressures of 1 GPa or so. However, over the past five years, studies have shown that this view is incorrect. Instead, all the systems so far studied undergo structural rearrangement to other, new types of hydrate structure that remain stable to much higher pressures than had been thought possible. In this paper we review work on gas hydrates at pressures above 0.5 GPa, identify common trends in transformations and structures, and note areas of uncertainty where further work is needed.  相似文献   

18.
Infrared spectra of mixed clathrate hydrates, with either ethylene oxide (EO) or tetrahydrofuran (THF) and methanol molecules as the guest species, have been obtained from thin films prepared by vapor deposition of D2O mixtures in the 115–130 K range. Although methanol acts as a suppressant to the direct vapor deposition of a type I clathrate with EO, nearly complete conversion of 115 K amorphous codeposits, to the crystalline mixed clathrate, occurs upon warming near 150 K. By contrast, the type II clathrate of THF shows an increased crystalline quality when methanol is included in the vapor deposits of the mixed clathrate hydrate at 130 K. The observation of the O---D stretch-mode band of weakly bonded CD3OD near 2575 cm−1 is part of the evidence that the methanol molecules are encaged. However, as shown theoretically by Tanaka, the clathrate hydrates of methanol, even when mixed with an ether help gas, are not stable structures but form at low temperatures because of kinetic factors, only to decompose in the 140–160 K range. Attempts to prepare a simple type I or type II clathrate hydrate of methanol have produced mixed results. Limited amounts of clathrate hydrate form during deposition but annealing does not result in complete conversion to crystalline clathrates, particularly for host : guest ratios of 17 : 1.  相似文献   

19.
We have performed a comprehensive theoretical investigation of the structural principles of semiconducting clathrate frameworks composed of the Group 14 elements carbon, silicon, germanium, and tin. We have investigated the basic clathrate frameworks, together with their polytypes, intergrowth clathrate frameworks, and extended frameworks based on larger icosahedral building blocks. Quantum chemical calculations with the PBE0 hybrid density functional method provided a clear overview of the structural trends and electronic properties among the various clathrate frameworks. In agreement with previous experimental and theoretical studies, the clathrate II framework proved to be the energetically most favorable, but novel hexagonal polytypes of clathrate II also proved to be energetically very favorable. In the case of silicon, several of the studied clathrate frameworks possess direct and wide band gaps. The band structure diagrams and simulated powder X-ray patterns of the studied frameworks are provided and systematic preliminary evaluation of guest-occupied frameworks is conducted to shed light on the characteristics of novel, experimentally feasible clathrate compositions.  相似文献   

20.
Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号