首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The capability of hemimicelles-based solid phase extraction (SPE)/liquid chromatography/atmospheric pressure chemical ionisation in positive mode, ion trap mass spectrometry (LC/(APCl+-IT)-MS) for the concentration, separation and quantitation of non-ionic surfactants has been investigated. Concentration was based on the formation of mixed aggregates of analytes [alkylphenol ethoxylates (APE, octyl and nonyl) and alkyl ethoxylates (AE, C12-C16)] with the anionic surfactant sodium dodecyl sulphate (SDS) that is adsorbed on alumina. Parameters affecting SPE were investigated on the basis that hemimicelles are dynamic entities in equilibrium with the aqueous phase. The performance of ion trap mass spectrometry for MS and MS/MS quantitation of non-ionic homologues was assessed. Recoveries of analytes from wastewater influent and effluent and river water samples ranged between 91 and 98% and were found independent on the length of the alkyl chain under the optimised conditions. Anionic surfactants did not interfere to the levels found in environmental samples. The detection limits ranged between 14 and 111 ng/l for wastewater influent, 10 and 40 for wastewater effluent and 4 and 35 for river water, after concentration of 250, 500 and 750 ml of sample, respectively. The approach was applied to the determination of AE and APE in influent and effluent samples from four wastewater treatment plants and four river samples. The concentrations of individual non-ionic surfactants found ranged between 0.3 and 373 microg/l.  相似文献   

2.
A solid-phase extraction (SPE) and liquid chromatographic (LC) method was developed for the determination of selected fluoroquinolone (FQ) drugs including ofloxacin, norfloxacin, and ciprofloxacin in municipal wastewater samples. Extraction of the FQs was carried out with a weak cation exchanger SPE cartridge, the Oasis WCX. The cartridge was washed with water and methanol as a cleanup before the FQs were eluted by a mixture of methanol, acetonitrile, and formic acid. Separation of the FQs was achieved by using a Zorbax SB-C8 column under isocratic condition at a flow rate of 0.2mL/min. Recoveries of the FQs in spiked final effluent samples were between 87 and 94% with a relative standard deviation of less than 6%. Several techniques have been evaluated for the detection of FQs in sewage extracts; they included fluorescence detection and electrospray ionization (ESI) mass spectrometry using either mass-selective detection or tandem mass spectrometry (MS/MS). When they were applied to sewage influent and effluent samples, the LC-MS/MS technique operating in the multiple reaction monitoring (MRM) mode proved to be best suited for the determination of FQs in sewage samples as it provided the highest sensitivity (limit of quantification 5ng/L) and selectivity. The observation of signal suppression (matrix effect) for some FQs in ESI LC-MS and LC-MS/MS is discussed and a solution is proposed. The three FQs were detected in all the sewage samples tested in this work, with median concentrations between 34 and 251ng/L.  相似文献   

3.
A method using automated on-line solid phase extraction (SPE) directly coupled to liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed for the analysis of six pharmaceuticals by isotope dilution. These selected pharmaceuticals were chosen as representative indicator compounds and were used to evaluate the performance of the on-line SPE method in four distinct water matrices. Method reporting limits (MRLs) ranged from 10 to 25 ng/L, based on a 1 mL extraction volume. Matrix spike recoveries ranged from 88 to 118% for all matrices investigated, including finished drinking water, surface water, wastewater effluent and septic tank influent. Precision tests were performed at 50 and 1000 ng/L with relative standard deviations (RSDs) between 1.3 and 5.7%. A variety of samples were also extracted using a traditional off-line automated SPE method for comparison. Results for both extraction methods were in good agreement; however, on-line SPE used approximately 98% less solvent and less time. On-line SPE coupled to LC-MS/MS analysis for selected indicators offers an alternative, more environmentally friendly, method for pharmaceutical analysis in water by saving time and costs while reducing hazardous waste and potential environmental pollution as compared with off-line SPE methods.  相似文献   

4.
A pilot-survey study was performed by collecting samples (influent and effluent wastewaters, rivers and tap waters) from different locations in Europe (Spain, Belgium, Germany and Slovenia). A solid-phase extraction (SPE) followed by liquid chromatography–tandem mass spectrometry method was applied for the determination of pharmaceuticals (ibuprofen, naproxen, ketoprofen, diclofenac and clofibric acid). Method detection limits and method quantification limits were at the parts-per-trillion level (7.5–75 ng/L). The recovery rates of the SPE from deionized water and effluent wastewater samples spiked at 100- and 1,000-ng/L levels ranged from 87 to 95%. Identification criteria in compliance with the EU regulation for confirmatory methods of organic residues were applied. A detailed study of signal suppression evaluation for analysis of pharmaceutical residues in effluent wastewaters is presented.  相似文献   

5.
This paper presents a selective and efficient sample preparation procedure for NLLGLIEAK, signature peptide for the small cell lung cancer (SCLC) biomarker ProGRP, in human serum. The procedure is based on immuno‐capture of ProGRP in 96‐wells microtiter plates coated with the mAb E146. After immuno‐capture and thorough rinse, trypsin was added for in‐well digestion. Subsequently the signature peptide was enriched by SPE and determined by LC‐MS/MS. Various steps in the procedure were optimized to achieve a low LOD such as dilution of sample, tryptic digestion, and SPE cleanup and peptide enrichment conditions. A single quadropole MS was used during optimization of the method. A triple quadropole MS was used in the method evaluation in order to improve sensitivity. The evaluation showed good repeatability (RSD, 11.9–17.5%), accuracy (3.0–6.6%), and linearity (r2 = 0.995) in the tested range (0.5–50 ng/mL). LOD and LOQ were in the pg/mL area (0.20 and 0.33 ng/mL, respectively), enabling the determination of clinically relevant concentrations. The method was applied to two patient samples and showed good agreement with an established immunological reference method. The final method was compared to a previous published LC‐MS method for the determination of ProGRP in serum based on protein precipitation and online sample cleanup. Both showed acceptable method performance, however, the immuno‐capture LC‐MS method was superior with respect to sensitivity. This illustrates the large potential of immuno‐capture sample preparation prior to LC‐MS in protein biomarker quantification.  相似文献   

6.
A sensitive and selective liquid chromatography with tandem mass spectrometry (LC‐MS/MS) was developed for determining the concentrations of novel Janus kinase inhibitor ASP015K and its sulfated metabolite M2 in rat plasma. This method involves solid‐phase extraction (SPE) from 25 μL of rat plasma. LC separation was performed on an Inertsil PH‐3 column (100 mm L ×4.6 mm I.D., 5 µm) with a mobile phase consisting of 10 mM ammonium acetate and methanol under linear gradient conditions. Analytes were introduced to the LC‐MS/MS through an electrospray ionization source and detected in positive‐ion mode using selected reaction monitoring. Standard curves were linear from 0.25 to 500 ng/mL (r ≥0.9964). This assay enabled quantification of ASP015K and M2 at a concentration as low as 0.25 ng/mL in rat plasma. Validation data demonstrated that the method is selective, sensitive and accurate. Further, we also successfully applied this method to a preclinical pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A simple and reliable method was developed to detect two basic synthetic dyes, rhodamine B (RB) and rhodamine 6G (R6G), in wastewater and surface water samples by high performance liquid chromatography with fluorescence detection (HPLC‐FLD). These dyes have been reported to be both mutagenic and carcinogenic in various organisms. The contents of these two dyes in water samples were extracted by Oasis HLB solid‐phase extraction (HLB‐SPE), and were then determined by an isocratic HPLC using an Atlantis® T3‐C18 column. Water samples at various pH conditions and the compositions of eluents for SPE were evaluated. The results indicate that the proposed method is precise and sensitive in analyzing these two basic synthetic dyes, and the limits of quantitation were 1.5 ng/L for RB and 0.3 ng/L for R6G in 100 mL of water samples. The recovery of analytes in spiked surface water and municipal wastewater treatment plant (WWTP) effluent samples ranged from 61 to 90% with the precision (RSD) ranging from 2 to 12%. The concentrations of analytes were detected in various water samples ranging from 0.7 to 81 ng/L.  相似文献   

8.
A new, simple and sensitive method for isolating nine compounds from the bisphenol group (analogues: A, B, C, E, F, G, Cl2, Z, AP) based on one-step liquid–liquid microextraction with in situ acylation followed by gas chromatography-mass spectrometry was developed and validated using influent and effluent wastewaters. The chemometric approach based on the Taguchi method was used to optimize the main conditions of simultaneous extraction and derivatization. The recoveries of the proposed procedure ranged from 85 to 122%, and the repeatability expressed by the coefficient of variation did not exceed 8%. The method’s limits of detection were in the range of 0.4–64 ng/L, and the method’s limits of quantification ranged from 1.3 to 194 ng/L. The developed method was used to determine the presence of the tested compounds in wastewater from a municipal wastewater treatment plant located in northeastern Poland. From this sample, eight analytes were detected. Concentrations of bisphenol A of 400 ng/L in influent and 100 ng/L in effluent were recorded, whereas other bisphenols reached 67 and 50 ng/L for influent and effluent, respectively. The removal efficiency of bisphenol analogues in the tested wastewater treatment plant ranged from 7 to approximately 88%.  相似文献   

9.
Pharmaceuticals constitute one of the most important emerging classes of environmental pollutants. A three‐phase solvent system of water, water containing 0.1% of formic acid and acetonitrile was successfully used to separate, by liquid chromatography with mass spectrometry (LC‐MS), polarity‐matched pharmaceuticals, that is, carbamazepine, clarithromycin, and erythromycin, as well as amoxicillin and metformin. Despite of polarity similarities, these pharmaceuticals were completely resolved in the analytical run time of 15 min. The optimized three‐phase solvent system based‐method was validated for the simultaneous analysis of six matched‐polarity pharmaceuticals in wastewater samples. Good linearity (coefficient of determination more than 0.993) and precision (relative standard deviation less than 15.66%) were achieved. Recovery of analytes from the wastewater was between 0.70 and 1.18. Limits of detections ranged from 0.0001 to 0.5114 µg/L. No significant matrix effect, evaluated by post extraction addition, was observed in the electrospray ionization (ESI) source. Then, this methodology has been successfully applied to environmental study of pharmaceutical residues occurring in influent and effluent wastewater samples, from the main wastewater treatment plant in Potenza (Basilicata, Southern Italy).  相似文献   

10.
The aim of this work is to establish a method for the simultaneous determination of eight penicillins in milk samples by LC‐UV, LC‐MS and LC‐MS/MS. The procedure involves a step for clean‐up and to preconcentrate the analytes by SPE and a subsequent chromatographic analysis. LC‐UV, LC‐MS and LC‐MS/MS have been used for the simultaneous quantification of penicillins in milk. The proposed methods have been validated according to the EU guideline and present LOQ below the maximum limits of residues (MRLs) established by the European Union for penicillins in milk. The developed methods were applied to different milk samples obtained from cows medicated with penicillins.  相似文献   

11.
A method was developed to determine 11 pharmaceutical compounds in water samples. The method uses SPE and HPLC coupled to MS (LC/MS) using ESI in both positive and negative modes. Three different sorbents were compared for the extraction of analytes from river and sewage treatment plant (STP) waters and OASIS HLB provided the best results. For the solid-phase extraction of 500 mL of river water samples, the recoveries were between 41 and 101% with the exception of acetaminophen, salicylic acid and naproxen. The LODs were between 3 and 5 ng/L for all the compounds, except naproxen which had an LOD of 15 ng/L. Acetaminophen, caffeine, carbamazepine, bezafibrate and ibuprofen were found in three of the tested river samples at ng/L levels and among them, the highest values were for caffeine and bezafibrate with 305 and 363 ng/L, respectively. For the influent and effluent water samples of the STP, volumes of 100 and 250 mL were used, respectively, to obtain acceptable recoveries. All the compounds showed recoveries between 33 and 91% for effluent samples and 33-72% for influent samples, with the exception of acetaminophen, salicylic acid and bezafibrate, which had lower recoveries. The method developed enabled pharmaceuticals in the influent and effluent sewage waters to be determined in five campaigns carried out between February 2004 and June 2005. Several pharmaceuticals were found in the influent samples: for instance, maximum concentrations of ibuprofen and caffeine were 6 and 40 microg/L, respectively.  相似文献   

12.
A method using an online solid-phase extraction (SPE) and ion-pairing liquid chromatography with electrospray tandem mass spectrometry (LC/ES-MS/MS) was developed for determination of amphetamine (Amp), methamphetamine (mAmp), 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxyethylamphetamine (MDEA), and 3,4-methylenedioxymethamphetamine (MDMA) in urine samples. A SPE cartridge column with both hydrophilic and lipophilic functions was utilized for online extraction. A reversed-phase C18 LC column was employed for LC separation and MS/MS was used for detection. Trifluoroacetic acid was added to the mobile phase as an ion-pairing reagent. This method was fully automated and the extraction and analysis procedures were controlled by a six-port switch valve. Recoveries ranging from 85-101% were measured. Good linear ranges (10-500 ng/mL) for Amp and mAmp were determined. For MDA, MDMA and MDEA, dual linear ranges were obtained from 5-100 and 100-500 ng/mL, respectively. The detection limit of each analytical compound, based on a signal-to-noise ratio of 3, ranged from 1-3 ng/mL. The applicability of this newly developed method was examined by analyzing several urine samples from drug users. Good agreement was obtained between the results from this method and a literature GC/MS method.  相似文献   

13.
A method for the analysis of clotrimazole was developed with dispersive liquid–liquid microextraction for sample pre‐concentration and HPLC–MS/MS for analysis. A linear ion trap was used for the confirmation of clotrimazole identity in the samples. The developed method enables the analysis of clotrimazole in river water and sewage effluent from wastewater treatment plants with a LOQ of 0.7 ng/L. Environmental monitoring of clotrimazole was undertaken. Samples from river water and sewage effluents were analysed over a one‐year period. Clotrimazole was found in every tested sample with concentration range from 1 to 31 ng/L. The amount of clotrimazole in tested samples was highly dependent on sampling season. The highest results were obtained in summer and autumn.  相似文献   

14.
This study described a fully automated method using on‐line solid phase extraction of large volume injections coupled with high performance liquid chromatography (HPLC) and tandem mass spectrometry (MS/MS) to simultaneously detect a group of recalcitrant microconstituents (pharmaceuticals and personal care products, steroid hormones and sterols) in aqueous matrices. Samples (1 mL to 20 mL) were loaded to the preconcentration column at 1 mL/min, and the column was washed with 1000 μL of 25% methanol in LC/MS water to remove polar and ionic interferences before LC‐MS/MS analysis. Three different atmospheric pressure ionization (API) techniques, including photoionization (APPI) with four different dopants (acetone, anisole, chlorobenzene and toluene), heated electrospray ionization (HESI) and atmospheric pressure chemical ionization (APCI), were evaluated on the basis of method detection limits (MDLs) and recoveries from different aqueous matrixes. Results indicated that APPI with toluene as dopant was the most sensitive ionization method for the majority of the analytes. When using 5 mL of sample, MDLs for pharmaceuticals and personal care products, including carbamazepine, DEET, caffeine, naproxen, acetaminophen and primidone, were between 0.3 ng/L and 15 ng/L. MDLs of hormones, including testosterone, equilenin, progesterone, equilin, 17β‐estradiol, 17α‐ethynylestradiol, estrone, androsterone, mestranol and estriol, were between 1.2 ng/L and 37 ng/L. The combination of APPI with dopant allowed the detection of two difficult to ionize fecal related sterols, such as coprostan‐3‐ol and coprostan‐3‐one with MDLs of 5.4 ng/L and 11 ng/L, respectively. Calculated MDLs are more than adequate for analysis of wastewater using 1 to 5 mL sample size and for surface waters using up to 20 mL sample size. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Hemimicelles and admicelles of cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC), adsorbed onto silica, were tested as sorbents for the solid phase extraction (SPE) of linear alkylbenzene sulfonate (LAS) homologues from environmental water samples. LASs were quantitatively retained on both surfactants due to high hydrophobic and ionic interactions, which led to the formation of analyte-extractant mixed aggregates. Parameters affecting the SPE of LASs were optimised. Recoveries of analytes from wastewater influent and effluent and river water samples ranged between 86 and 110%. Combination of SPE with liquid chromatography/mass spectrometry provided detection limits for the different LAS homologues of about 4 ng L(-1). The precision of the method, expressed as relative standard deviation, ranged from 5 to 9%. The method was applied to the analysis of LASs in wastewater and river samples using sample volumes between 10 and 25 mL. The LAS concentrations found ranged from 9 to 503 microg L(-1). No cleaning step was required to get accurate results.  相似文献   

16.
A gas chromatography–tandem mass spectrometry (GC–MS/MS) method has been developed for the determination of selected pharmaceutical residues (carbamazepine, salicylic acid, clofibric acid, ibuprofen, 2-hydroxy-ibuprofen, fenoprofen, naproxen, ketoprofen, diclofenac, and triclosan) in sewage influent and roughly primary-treated effluent. The method involved solid-phase extraction (SPE) with polymeric sorbents, and two SPE cartridges were compared for the extraction and elution of the targeted compounds in complex matrices. A successful chemical derivatization of carbamazepine and acidic compounds using N,O-bis(trimethylsilyl) trifluoroacetamide +10% trimethylchlorosilane is also described. The quantification limits of the analytical procedure ranged from 30 to 60?ng?L?1 for 500?mL of wastewater. The best recovery rates (72–102%) in spiked effluent samples were obtained with Phenomenex Strata-X? cartridges. Detection limits (S/N?=?3) were estimated at between 1 and 18?ng?L?1. The reported GC–MS/MS method significantly reduces the strong matrix effects encountered with more expensive LC-MS/MS techniques. Application of the developed method showed that most selected analytes were detected at concentrations ranging from low µg?L?1 to trace level ng?L?1 in Montreal's wastewater treatment plant effluent and influent, as well as in the receiving waters at more than 8?km downstream of the effluent outfall. The rugged alternative analytical method is suitable for the simultaneous analysis of carbamazepine and pharmaceutical acidic residues in wastewater samples from influents and effluents that have undergone rough primary treatment.  相似文献   

17.
A solid‐phase extraction and liquid chromatography‐tandem mass spectrometry (SPE/LC‐MS‐MS) method was developed and validated for the simultaneous determination of nicotine, five drugs of abuse (morphine, cocaine, codeine, methadone, and 2‐ethylidene‐1,5‐dimethyl‐3,3‐diphenylpyrrolidine) and four metabolites (dihydrocodeine, 6‐acetylmorphine, 11‐nor‐carboxy‐Δ9‐tetrahydrocannabinol, and benzoylecgonine) in water samples. A Fused‐Core? particle column was used as an alternative to sub‐2‐μm particles in chromatographic separations to work with low backpressures and high efficiencies in short analysis times. Drugs were extracted from waste and surface water with SPE using Oasis MCX cartridges. Electrospray (ESI) in positive and negative mode and tandem MS selected reaction monitoring mode were used for identification and quantification. Calibration by linear regression analysis with deuterated internal standards was used to compensate the matrix effects. Limits of detection were found as low as 0.5–1 ng/L (surface water) and 1–50 ng/L (wastewater). The method was applied to the analysis of different kinds of samples. Wastewater from a sewage treatment plant was collected from three sampling points (after primary, secondary, and tertiary treatments) for a week. The analysis of the samples revealed a significant presence of these drugs in samples from primary treatments, where maximum concentrations of nicotine (1105 ng/L) and benzoylecgonine (3336 ng/L) were found. Most of the compounds showed values between 相似文献   

18.
A method using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the determination of 12 beta-blockers and beta(2)-agonists in wastewater samples. Extraction of the drugs was effected by an Oasis MCX cartridge with a strong cation resin adsorbent. Matrix coextractives were removed from the SPE cartridge by methanol prior to the elution of the drugs with a mixture of dichloromethane, 2-propranol, and ammonium hydroxide. The extract was analyzed by LC-MS/MS with electrospray ionization operating in the positive mode. Recovery of the 12 compounds was in most cases better than 85% at the fortification levels of 500 and 50 ng/L, with standard deviations between 3 and 7%. Based on a concentration factor of 250, the method detection limits ranged from 6 to 11 ng/L for the target compounds. No degradation of these drugs in spiked sewage effluent samples was observed over a storage period of 7 days at 4 degrees C in the dark. Many beta-blockers were detected in the 14 wastewater samples collected from seven Canadian sewage treatment plants; those occurring at the highest concentrations were atenolol, acebutolol, sotalol, and metroprolol, with overall median concentrations of 1370, 339, 282, and 257 ng/L, respectively. However, there was only a small decrease in the median concentrations of these beta-blockers between the primary and final effluent, suggesting that these drugs are not easily removed by the sewage treatment processes. As a result of selective extraction and effective removal of coextractives, no matrix effect was observed for the samples during LC-MS/MS analyses.  相似文献   

19.
Nano‐LC and CEC were coupled to MS through a nanospray or a pressurized liquid‐junction interface for the simultaneous separation and determination of 11 estrogenic compounds. Different stationary phases, that is, phenyl, C18, and C18 bidentate silica hydrate, were studied. For both techniques, the phenyl stationary phase was the best option, considering separation efficiency, selectivity, and resolution. Under the optimized conditions, the baseline separation of the target compounds (including estradiol and zearalanol epimers) was achieved in less than 20 min in nano‐LC‐MS and less than 13 min in CEC‐MS. Molecular imprinted polymer SPE was used for extracting the target compounds from mineral water samples with the analysis of nano‐LC‐MS. The whole molecular imprinted polymer SPE nano‐LC‐MS method was validated through a recovery study at two levels of concentration. Sensitivity was improved by on‐column focusing technique obtaining LODs in the range 1.4–55.4 ng/L.  相似文献   

20.
Atenolol, nadolol, metoprolol, bisoprolol and betaxolol were simultaneously determined in groundwater samples by large‐volume injection coupled‐column reversed‐phase liquid chromatography with fluorescence detection (LVI‐LC‐LC‐FD) and liquid chromatography‐time‐of‐flight mass spectrometry (LC‐TOF‐MS). The LVI‐LC‐LC‐FD method combines analyte isolation, preconcentration and determination into a single step. Significant reductions in costs for sample pre‐treatment (solvent and solid phases for clean up) and method development times are also achieved. Using LC‐TOF‐MS, accurate mass measurements within 3 ppm error were obtained for all of the β‐blockers studied. Empirical formula information can be obtained by this method, allowing the unequivocal identification of the target compounds in the samples. To increase the sensitivity, a solid‐phase extraction step with Oasis MCX cartridge was carried out yielding recoveries of 79–114% (n=5) with RSD 2–7% for the LC‐TOF‐MS method. SPE gives a high purification of β‐blockers compared with the existing methods. A 100% methanol wash was allowed for these compounds with no loss of analytes. Limit of quantification was 1–7 ng/L for LVI‐LC‐LC‐FD and 0.25–5 ng/L for LC‐TOF‐MS. As a result of selective extraction and effective removal of coextractives, no matrix effect was observed in LVI‐LC‐LC‐FD and LC‐TOF‐MS analyses. The methods were applied to detect and quantify β‐blockers in groundwater samples of Almería (Spain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号