首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new water soluble fluorene‐based polyelectrolyte containing on‐chain porphyrin units has been synthesized via Suzuki coupling, for use in optoelectronic devices. The material consist of a random copolymer of poly{1,4‐phenylene‐[9,9‐bis(4‐phenoxy butylsulfonate)]fluorene‐2,7‐diyl} (PBS‐PFP) and a 5,15‐diphenylporphyrin (DPP). The energy transfer process between the PBS‐PFP units and the porphyrin has been investigated through steady state and time‐resolved measurements. The copolymer PBS‐PFP‐DPP displays two different emissions one located in the blue region of the spectra, corresponding to the fluorene part and another in the red due to fluorescent DPP units either formed directly or by exciton transfer. However, relatively inefficient energy transfer from the PFP to the on‐chain porphyrin units was observed. We compare this with a system involving an anionic blue light‐emitting donor PBS‐PFP and a anionic red light‐emitting energy acceptor meso‐tetrakisphenylporphyrinsulfonate (TPPS), self‐assembled by electrostatic attraction induced by Ca2+. Based on previous studies related to chain aggregation of the anionic copolymer PBS‐PFP, two different solvent media were chosen to further explore the possibilities of the self‐assembled system: dioxane–water and aqueous nonionic surfactant n‐dodecylpentaoxyethylene glycol ether (C12E5). In contrast, with the on‐chain PBS‐PFP‐DPP system the strong overlap of the 0‐0 emission peak of the PBS‐PFP and the Soret absorption band of the TPPS results in an efficient Förster transfer. This is strongly dependent on the solvent medium used. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
The condensation of water vapor on a volatile polymeric solution leads to a porous surface after evaporation of both solvent and water. However, the stabilization of the water microdroplet is of great importance, which can be achieved using specific polymer or adding a third substance to the polymer solution. Short chain alcohols (methanol, ethanol, and n‐propanol) are utilized to fabricate a self‐assembled porous honeycomb film of linear, low molecular weight polystyrene using the breath figure technique. A combination of breath figure processing and the effect of alcohol on a water droplet can stabilize the pattern and make pores on the surface of the polymer film. The quality of the porous honeycomb film is strongly dependent on the type of alcohols and the concentration of polymer. In a specific range of polymer and alcohol concentration, pores cover all the surface of the polymer film. This method offers the possibility of producing a honeycomb structure with no trace of additive residual after the fabrication process and avoiding polymer modification. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 709–718  相似文献   

3.
The preparation of polyolefin‐based stereoregular diblock copolymers by postpolymerization of ethenyl‐capped syndiotactic polypropylene‐based propylene/norbornene copolymer (sPP‐based P‐N copolymer) led to the successful generation of a structurally uniform stereoregular diblock copolymer for self‐assembly studies. The ethenyl‐capped prepolymer was prepared by conducting propylene/norbornene copolymerization in the presence of Me2C(Cp)(Flu)ZrCl2/MAO. Ozonolysis of ethenyl‐capped sPP‐based P‐N copolymer provided the formyl group end‐capped, end‐functionalized prepolymer with a quantitative functional group conversion ratio. Subsequently, connecting the formyl end‐group of the stereoregular prepolymer by coupling with living anionic polystyrene resulted in the high yield production of stereoregular diblock copolymer (sPP‐based P‐N‐block‐polystyrene), which is difficult to prepare by other methods. The resulting stereoregular diblock copolymer possesses precise chemical architecture to self‐organize into consistent nanostructures as evidenced by transmission electron microscopy and small angle X‐ray scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4843–4856, 2008  相似文献   

4.
The use of amphiphilic triblock copolymers bearing a reactive alkoxysilane middle block as polymeric stabilizers is reported in this work. A series of poly(ethylene glycol) methyl ether methacrylate‐b‐(3‐trimethoxysilyl)propyl methacrylate‐b‐benzyl methacrylate (PEGMA‐b‐MPS‐b‐BzMA) triblock copolymers were prepared by RAFT solution polymerization and polymerization‐induced self‐assembly (PISA), respectively, where the various block lengths and overall composition were varied. The copolymers prepared by solution polymerization were employed as oil‐in‐water stabilizers where upon application of a catalyst, the 3‐(trimethoxysilyl)propyl methacrylate (MPS) block at the droplet interface was crosslinked to yield capsule‐like structures. The effectiveness of interfacial crosslinking was validated by dynamic light scattering and electron microscopy. In situ self‐assembly by the PISA method resulted in spherical nanoparticles of controllable size that were readily crosslinked by addition of base, with significant enhancement of colloidal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1897–1907  相似文献   

5.
Photosensitive ultrathin films with phosphate‐containing polyanions and diazoresin (DR) as a polycation were fabricated with a self‐assembly technique. The phosphate‐containing polyanions were poly(sodium phosphate), phosphorylated poly(vinyl alcohol), and DNA. The fabrication process was monitored by the determination of the absorbance from DR. The surface morphology of the multilayer films was observed with atomic force microscopy. Under ultraviolet irradiation, the linkage between the layers of the films changed from being ionic to being covalent; as a result, the stability of the films toward polar solvents increased. This kind of film may have applications for biosensor devices. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 222–228, 2002  相似文献   

6.
Self‐assembled peptide amphiphile (PA) nanofibers are a class of supramolecular materials with promising applications in nanotechnology. Alignment of nanofibers, which is essential for biomaterials applications, is achieved at low salt concentrations in the PA nanofiber suspensions. Regardless of its importance, the effect of ion concentration on the properties of these nanostructures remains unexplored. Using atomistic molecular dynamics simulations, canonical PA nanostructures are investigated to elucidate the relationship between counterion condensation and morphological changes. Simulations reveal that nanofibers with the highest cross‐section density have expanded radii. This expansion decreases the accessible volume for sodium counterions and diminishes the counterion translational entropy, while also reducing the total electrostatic potential. Interestingly, we show that the competition between these effects leads to a fraction of condensed counterions independent of the fiber radius. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 901–906  相似文献   

7.
Asymmetric pulsed field electrophoresis within crystalline arrays is used to generate angular separation of DNA molecules. Four regimes of the frequency response are observed, a low frequency rise in angular separation, a plateau, a subsequent decline, and a second plateau at higher frequencies. It is shown that the frequency response for different sized DNA is governed by the relation between pulse time and the reorientation time of DNA molecules. The decline in angular separation at higher frequencies has not previously been analyzed. Real‐time videos of single DNA molecules migrating under high frequency‐pulsed electric field show the molecules no longer follow the head to tail switching, ratchet mechanism seen at lower frequencies. Once the pulse period is shorter than the reorientation time, the migration mechanism changes significantly. The molecule reptates along the average direction of the two electric fields, which reduces the angular separation. A freely jointed chain model of DNA is developed where the porous structure is represented with a hexagonal array of obstacles. The model qualitatively predicts the variation of DNA angular separation with respect to frequency.  相似文献   

8.
The self‐assembly of dispersed polymer‐coated ferromagnetic nanoparticles into micron‐sized one‐dimensional mesostructures at a liquid–liquid interface was reported. When polystyrene‐coated Co nanoparticles (19 nm) are driven to an oil/water interface under zero‐field conditions, long (≈ 5 μm) chain‐like assemblies spontaneously form because of dipolar associations between the ferromagnetic nanoparticles. Direct imaging of the magnetic assembly process was achieved using a recently developed platform consisting of a biphasic oil/water system in which the oil phase was flash‐cured within 1 s upon ultraviolet light exposure. The nanoparticle assemblies embedded in the crosslinked phase were then imaged using atomic force microscopy. The effects of time, temperature, and colloid concentration on the self‐assembly process of dipolar nanoparticles were then investigated. Variation of either assembly time t or temperature T was found to be an interchangeable effect in the 1D organization process. Because of the dependence of chain length on the assembly conditions, we observed striking similarities between 1D nanoparticle self‐assembly and polymerization of small molecule monomers. This is the first in‐depth study of the parameters affecting the self‐assembly of dispersed, dipolar nanoparticles into extended mesostructures in the absence of a magnetic field. © 2008 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 46: 2267–2277, 2008  相似文献   

9.
This article reports on optically active core/shell nanoparticles constituted by chiral helical polymers and prepared by a novel approach: using self‐assembled polymer micelles as reactive nanoreactors. Such core/shell nanoparticles were composed of optically active helical‐substituted polyacetylene as the core and thermosensitive poly(N‐isopropylacrylamide) as the shell. The synthetic procedure is divided into three major steps: (1) synthesis of amphiphilic diblock copolymer bearing polymerizable C[tbond]C bonds via atom transfer radical polymerization, followed by (2) self‐assembly of the diblock copolymer to form polymer micelles; and (3) catalytic emulsion polymerization of substituted acetylene monomer conducted using the polymer micelles as reactive nanoreactors leading to the core/shell nanoparticles. The core/shell nanoparticles simultaneously exhibited remarkable optical activity and thermosensitivity. The facile, versatile synthesis methodology opens new approach toward preparing novel multifunctional core/shell nanoparticles.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The synthesis, structural, and retrostructural analysis of a library of self‐assembling dendrons containing triethyl and tripropyl ammonium, pyridinium and 3‐methylimidazolium chloride, tetrafluoroborate, and hexafluorophosphate at their apex are reported. These dendritic ionic liquids self‐assemble into supramolecular columns or spheres which self‐organize into 2D hexagonal or rectangular and 3D cubic or tetragonal liquid crystalline and crystalline lattices. Structural analysis by X‐ray diffraction experiments demonstrated the self‐assembly of supramolecular dendrimers containing columnar and spherical nanoscale ionic liquid reactors segregated in their core. Both in the supramolecular columns and spheres the noncovalent interactions mediated by the ionic liquid provide a supramolecular polymer and therefore, these assemblies represent a new class of dendronized supramolecular polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4165–4193, 2009  相似文献   

11.
Sulfonated polystyrene (PS) particles were prepared by the sulfonation of PS microspheres with H2SO4. Then, composite particles were synthesized by layer‐by‐layer (LbL) self‐assembly with funtionalized multiwall carbon nanotubes (fMCNTs) and polyelectrolytes on sulfonated PS particles. The amount of fMCNTs on PS particles was adjusted by controlling the number of fMCNT layers by LbL self‐assembly. Composite particles were characterized by ζ‐potential analysis, scanning electron microscopy, and thermal analysis. The electrorheological (ER) properties of composite particles in insulating oil was investigated with varying the number of fMCNT layers under controlled electric fields. It was observed that the number of fMCNT layers was a critical factor to determine the ER properties of composite particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1058–1065, 2008  相似文献   

12.
A helical inclusion complex polymer was fabricated through the polymerization of β‐cyclodextrin‐threaded chiral monomers. The photo induced polymerization of inclusion complex clusters caused shrinkage of the polymer and decreased the pitches, leading to the disappearance of spring‐like construction under TEM. From the results of circular dichroism of the inclusion complex polymer, the helical construction was confirmed, and an entanglement of the polymer chains is proposed. After removal of the β‐cyclodextrins from the pendant groups of the inclusion complex polymer, the helical structure was found to be maintained. The highly ordered molecular arrangement of β‐cyclodextrins removed from the inclusion complex polymer was confirmed using POM. Here we demonstrate the fabrication of helical polymer fibers composed of entangled polymers through self‐assembled β‐cyclodextrin‐threaded chiral monomers. The helical polymer construction was maintained by the entwisted polymer chains even after the removal of β‐cyclodextrins from the pendant groups of the inclusion complex polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2975–2981, 2010  相似文献   

13.
Stimuli‐responsive nanoporous membranes have attracted increasing interest in various fields due to their abrupt changes of permeation/separation in response to the external environment. Here we report ultrathin pH‐sensitive nanoporous membranes that are easily fabricated by the self‐assembly of poly(acrylic acid) (PAA) in a metal hydroxide nanostrand solution. PAA‐adsorbed nanostrands (2.5–5.0 nm) and PAA‐CuII nanogels (2.0–2.5 nm) grow competitively during self‐assembly. The PAA‐adsorbed nanostrands are deposited on a porous support to fabricate ultrathin PAA membranes. The membranes display ultrafast water permeation and good rejection as well as significant pH‐sensitivity. The 28 nm‐thick membrane has a water flux decrease from 3740 to 1350 L m?1 h?1 bar?1 (pH 2.0 to 7.0) with a sharp decrease at pH 5.0. This newly developed pH‐sensitive nanoporous membranes may find a wide range of applications such as controlled release and size‐ and charge‐selective separation.  相似文献   

14.
Hydrogels were the first biomaterials designed for clinical use. Their discovery and applications as soft contact lenses and implants are presented. This early hydrogel research served as a foundation for the expansion of biomedical polymers research into new directions: design of stimuli sensitive hydrogels that abruptly change their properties upon application of an external stimulus (pH, temperature, solvent, electrical field, biorecognition) and hydrogels as carriers for the delivery of drugs, peptides, and proteins. Finally, pathways to self‐assembly of block and graft copolymers into hydrogels of precise 3D structures are introduced. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5929–5946, 2009  相似文献   

15.
Cyclic D,L ‐α‐peptides are able to self‐assemble to nanotubes, although the inherent reason of the stability of this kind of nanotube as well as the intrinsic driving force of self‐assembly of the cyclic D ,L ‐α‐peptides still remain elusive. In this work, using several computational approaches, we investigated the structural and energy characteristics of a series of cyclo[(‐L ‐Phe‐D ‐Ala‐)4] and cyclo[(‐L ‐Ala‐D ‐Ala‐)4] oligomers. The results reveal that the thermodynamic stability, cooperativity, and self‐assembly patterns of cyclic D ,L ‐α‐peptide nanotubes are mainly determined by the interactions between cross‐strand side chains instead of those between backbones. For cyclo[(‐L ‐Phe‐D ‐Ala‐)4] oligomers, the steric interaction between cross‐strand side chains, especially the electrostatic repulsion between the phenyls in Phe residues, brings anticooperative effect into parallel stacking mode, which is responsible for the preference of self‐assembling nanotube in antiparallel vs. parallel stacking orientation. Based on our results, a novel self‐assembling mechanism is put forward—it is the L ‐L antiparallel dimer of cyclo[(‐L ‐Phe‐D ‐Ala‐)4], instead of the commonly presumed monomer, that acts as the basic building block in self assembly. It explains why these cyclic peptides uniquely self‐assemble to form antiparallel nanotubes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

16.
Prussian blue nanoparticles (PBNPs) were prepared by a self‐assembly process on a glassy carbon electrode (GCE) modified with poly(o‐phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNP‐modified PoPD/GCE was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of the modified electrode. The PBNPs/PoPD/GCE showed electrocatalytic activity towards the oxidation of pyridoxine (PN) and was used as an amperometric sensor. The modified electrode exhibited a linear response for PN oxidation over the concentration range 3–38.5 μM with a detection limit of ca 6.10 × 10?7 M (S/N = 3) and sensitivity of 2.79936 × 103 mA M?1 cm?2 using an amperometric method. The mechanism and kinetics of the catalytic oxidation reaction of PN were investigated using cyclic voltammetry and chronoamperometry. The values of α, kcat and D were estimated as 0.36, 1.089 × 102 M?1 s?1 and 8.9 × 10?5 cm2 s?1, respectively. This sensor also exhibited good anti‐interference and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A set of dendritic‐linear copolymers, poly(maleic anhydride‐grafted‐3,3′‐dimethyl‐(4‐aminophenylazanediyl)bis(2‐methylpropanoate))‐random‐polystyrene (PMA‐APM‐r‐PS), was successfully prepared by copolymerization of the novel dendritic macromonomer, 4‐(4‐(bis(3‐(4‐(bis(3‐methoxy‐2‐methyl‐3‐oxopropyl)amino)phenylamino)‐2‐methyl‐3‐oxopropyl)amino)phenylamino)‐4‐oxobut‐2‐enoic acid (MA‐APM), with styrene monomer. The dendritic MA‐APM macromonomer dendron 3,3′‐dimethyl‐(4‐aminophenylazanediyl)bis(2‐methylpropanoate) (APM) was then grafted by using the divergent growth method. FTIR, 1H NMR, and 13C NMR spectra were used to identify the structures of the dendron, the dendritic macromonomer, and the dendritic‐linear PMA‐APM‐r‐PS copolymer. Furthermore, microporous dendritic‐linear PMA‐APM‐r‐PS copolymer films were prepared by using solvent‐induced phase separation at room temperature. We investigated the phase separation behavior and morphological structures of the dendritic‐linear copolymer film as functions of dendritic GMA‐HPAM segments in the content using SEM. Self‐assembly of the dendritic‐linear PMA‐APM‐r‐PS copolymer in the MG2‐X system, which represented the second generation dendron containing X wt % of the dendritic MA‐APM segment, resulted in submicron phase segregation. Interestingly, the submicron phase segregation morphology of the MG2–43 sample presented a uniform size distribution of ordered‐array structures. The results of this study demonstrate that controlling the appropriate macromonomer content via the grafting of a three‐dimensional structure results in a self‐assembly process that is capable of providing an ordered‐array microporous morphology in a polymer film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3290–3301, 2010  相似文献   

18.
Thermosensitive diethylene glycol‐derived poly(L ‐glutamate) homopolypeptides (i.e., poly‐L ‐EG2‐Glu) with different molecular weights (MW) (Mn,GPC = 5380–32520) were synthesized via the ring‐opening polymerization (ROP) of EG2‐L ‐glutamate N‐carboxyanhydride (EG2‐Glu‐NCA) in N,N‐dimethylformamide solution at 50 °C. Their molecular structure, conformation transition, liquid crystal (LC) phase behavior, lower critical solution temperature (LCST) transition, and morphology evolution were thoroughly characterized by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, wide angle X‐ray diffraction, polarized optical microscope, transmission electron microscope, and dynamic light scattering. In solid state, the homopolypeptide poly‐L ‐EG2‐Glu presented a conformation transition from α‐helix to β‐sheet with increasing their MW at room temperature, while it mainly assumed an α‐helix of 80–86% in aqueous solution. Poly‐L ‐EG2‐Glu showed a thermotropic LC phase with a transition temperature of about 100 °C in solid state, while it gave a reversible LCST transition of 34–36 °C in aqueous solution. The amphiphilic homopolypeptide poly‐L ‐EG2‐Glu self‐assembled into nanostructures in aqueous solution, and their critical aggregation concentrations decreased with increasing MW. Interestingly, their morphology changed from spherical micelles to worm‐like micelles, then to fiber micelles with increasing MW. This work provides a simple method for the generation of different nanostructures from a thermosensitive biodegradable homopolypeptide. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
We adapted existing polymer growth strategies for equilibrium sampling of peptides described by modern atomistic forcefields with a simple uniform dielectric solvent. The main novel feature of our approach is the use of precalculated statistical libraries of molecular fragments. A molecule is sampled by combining fragment configurations—of single residues in this study—which are stored in the libraries. Ensembles generated from the independent libraries are reweighted to conform with the Boltzmann‐factor distribution of the forcefield describing the full molecule. In this way, high‐quality equilibrium sampling of small peptides (4–8 residues) typically requires less than one hour of single‐processor wallclock time and can be significantly faster than Langevin simulations. Furthermore, approximate, clash‐free ensembles can be generated for larger peptides (up to 32 residues in this study) in less than a minute of single‐processor computing. We discuss possible applications of our growth procedure to free energy calculation, fragment assembly protein‐structure prediction protocols, and to “multi‐resolution” sampling. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

20.
In this research, stimuli‐responsive porous/hollow nanoparticles were prepared by the self‐assembly method. First, chitosan‐graft‐poly(N‐isopropylacrylamide) (CS‐g‐PNIPAAm) copolymers were synthesized through polymerization of N‐isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) solution using ceric ammounium nitrate as the initiator. Then, the CS‐g‐PNIPAAm copolymers were dissolved in the acetic acid aqueous solution and heated to 40 °C to induce their self‐assembly. After CS‐g‐PNIPAAm assembled to form micelles, a cross‐linking agent was used to reinforce the structure to form nanoparticles. The molecular weight of grafted PNIPAAm on CS chains was changed to investigate its effect on the structure, morphology, thermo‐, and pH‐responsive properties of the nanoparticles. TEM images showed that a porous or hollow structure in the interior of nanoparticles was developed, depending on the medium temperature. The synthesized nanoparticles carried positive charges on the surface and exhibited stimuli‐responsive properties, and their mean diameter thus could be manipulated by changing the pH value and temperature of the environment. The nanoparticles showed a continuous release of the encapsulated doxycycline hyclate up to 10 days during an in vitro release experiment. These porous/hollow particles with environmentally sensitive properties are expected to be used in hydrophilic drug delivery system. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2377–2387, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号