首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
We have employed a high‐sensitivity off‐line coupled with on‐line preconcentration method, cloud‐point extraction (CPE)/cation‐selective exhaustive injection (CSEI) and sweeping‐MEKC, for the analysis of malachite green. The variables that affect CPE were investigated. The optimal conditions were 250 g/L of Triton X‐100, 10% of Na2SO4 (w/v), heat‐assisted at 60°C for 20 min. We monitored the effects of several of the CSEI‐sweeping‐MEKC parameters – including the type of BGE, the concentrations of SDS, the injection length of the high‐conductivity buffer, and the injection time of the sample – to optimize the separation process. The optimal BGE was 50 mM citric acid (pH 2.2) containing 100 mM SDS. In addition, electrokinetic injection of the sample at 15 kV for 800 s provided both high separation efficiency and enhanced sweeping sensitivity. The sensitivity enhancement for malachite green was 1.9×104 relative to CZE; the coefficients of determination exceeded 0.9928. The LOD, based on an S/N of 3:1, of CSEI‐sweeping‐MEKC was 0.87 ng/mL; in contrast, when using off‐line CPE/CSEI‐sweeping‐MEKC the sensitivity increased to 69.6 pg/mL. This proposed method was successfully applied to determine trace amounts of malachite green in fish water samples.  相似文献   

2.
《Electrophoresis》2018,39(16):2099-2106
A method consisting of cation‐selective exhaustive injection and sweeping (CSEI‐sweeping) as online preconcentration followed by a cyclodextrin modified electrokinetic chromatography (CDEKC) enantioseparation has been developed for the simultaneous determination of two brompheniramine enantiomers in rat plasma. In this method, analytes were electrokinetically injected at a voltage of 8 kV for 80 s in a fused‐silica capillary. Prior to the injection, the capillary was rinsed with 50 mM phosphate buffer of pH 3.5, followed by a plug of a higher conductivity buffer (150 mM phosphate pH 3.5, 20 psi, 6 min) and a plug of water (0.5 psi, 5 s). Separation was carried out applying –20 kV in 50 mM phosphate buffer, pH 3.5, containing 10% v/v ACN and 30 mg/mL sulfated‐β‐cyclodextrin (S‐β‐CD). Analytical signals were monitored at 210 nm. The detection sensitivity of brompheniramine enantiomers was enhanced by about 2400‐fold compared to the normal injection mode (hydrodynamic injection for 3 s at 0.5 psi, with a BGE of 50 mM phosphate buffer containing 20 mg/mL S‐β‐CD at pH 3.5), and LLOQ of two enantiomers were both 0.0100 μg/mL. In addition, this method had fairly good repeatability and showed promising capabilities in the application of stereoselective pharmacokinetic investigations for brompheniramine enantiomers in rat.  相似文献   

3.
In this study, we described a high‐sensitive on‐line preconcentration method for cypromazine (CYP) and melamine (MEL) analysis using cation‐selective exhaustive injection (CSEI) combined with sweeping‐MEKC. The optimum conditions of on‐line concentration and separation were discussed. The BGE contained 100 mM SDS, 50 mM phosphoric acid (pH=2.0) and 15% acetonitrile (v/v). The sample was injected at 10 kV for 600 s, separated at ?20 kV, and detected at 210 nm. The sensitivity enhancements were 6222 for CYP and 9179 for MEL. The linear dynamic ranges were 0.4?25 ng/mL for CYP (r=0.9995) and 0.2?12 ng/mL for MEL (r=0.9991). The LODs (signal‐to‐noise ratio, 3) were 43.7 and 23.4 pg/mL for CYP and MEL, respectively. The proposed method was applied to analyze CYP and MEL in dairy products pretreated using off‐line SPE to minimize the influence of the matrix. The recoveries of CYP and MEL were satisfactory (ca. 74–83%). The experimental results suggest that the CSEI‐sweeping‐MEKC method is feasible for the application to simultaneously detect trace levels of CYP and its metabolite MEL in real milk samples.  相似文献   

4.
A comparison between chiral cyclodextrin‐modified microemulsion electrokinetic chromatography (CD‐MEEKC) and cyclodextrin‐modified micellar electrokinetic chromatography (CD‐MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD‐MEEKC conditions were 0.8% n‐heptane, 2.3% SDS, 6.6% n‐butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl‐β‐cyclodextrin, pH 10, 25°C. The optimized CD‐MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) β‐CD, pH 10, 25°C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (Rs ~? 3) with similar migration time (ca. 15 min). CD‐MEEKC provided higher separation efficiencies (>300000) than CD‐MEKC (>200000). The LODs for CD‐MEEKC and CD‐MEKC were 4.7 μg/mL and 3.2 μg/mL, respectively. The RSDs of migration time and peak area for CD‐MEEKC were slightly higher than for CD‐MEKC. Both the demonstrated CD‐MEEKC and CD‐MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.  相似文献   

5.
Typically sweeping reversed migration EKC (RM‐EKC) is used for online enrichment and separation of neutral compounds in CE, however sweeping is not usually suitable for highly polar neutral compounds due to the lack of strong interaction with micellar phase. Since acidic BGE or coated capillaries (BGE pH 2–8) are used to virtually eliminate the EOF, migration of neutral analytes is only through association with the micelles with relatively slow electrophoretic mobility. To decrease the long analysis times that result, an auxiliary pressure can be applied, which also serves to avoid the associated band broadening. In this study, we have modified a commercially available CE instrument to perform pressure‐assisted sweeping. The apparatus described can be used to precisely control the application of pressure, and therefore direction and magnitude of bulk flow in the capillary. This modification allows us to employ longer capillaries and capillaries with larger internal diameter to increase the sensitivity. An optimized method was used for the analysis of a group of seven N‐nitrosamines that have been widely reported in environmental samples and good concentration factors of up to 34 were achieved. When a coated capillary is employed, this method is effective even at neutral pH, making it broadly applicable.  相似文献   

6.
The aim of this work was to clarify the mechanism taking place in field‐enhanced sample injection coupled to sweeping and micellar EKC (FESI‐Sweep‐MEKC), with the utilization of two acidic high‐conductivity buffers (HCBs), phosphoric acid or sodium phosphate buffer, in view of maximizing sensitivity enhancements. Using cationic model compounds in acidic media, a chemometric approach and simulations with SIMUL5 were implemented. Experimental design first enabled to identify the significant factors and their potential interactions. Simulation demonstrates the formation of moving boundaries during sample injection, which originate at the initial sample/HCB and HCB/buffer discontinuities and gradually change the compositions of HCB and BGE. With sodium phosphate buffer, the HCB conductivity increased during the injection, leading to a more efficient preconcentration by staking (about 1.6 times) than with phosphoric acid alone, for which conductivity decreased during injection. For the same injection time at constant voltage, however, a lower amount of analytes was injected with sodium phosphate buffer than with phosphoric acid. Consequently sensitivity enhancements were lower for the whole FESI‐Sweep‐MEKC process. This is why, in order to maximize sensitivity enhancements, it is proposed to work with sodium phosphate buffer as HCB and to use constant current during sample injection.  相似文献   

7.
Dispersive liquid–liquid microextraction has been proposed as an extraction technique combined with micellar electrokinetic chromatography (MEKC) for the analysis of eight 5‐nitroimidazole compounds, including some metabolites, in water samples. Determination has been carried out using a diode array detector, employing 20 mM sodium phosphate and 150 mM SDS as separation buffer. Separation has taken place under a voltage of 25 kV and a temperature of 20°C. Samples were prepared in a buffer without micelles and they were hydrodynamically injected at 50 mbar for 25 s, producing a sweeping effect on the analytes for increasing sensitivity. Different factors involved in the dispersive liquid–liquid microextraction procedure were optimized, such as sample pH, nature, and volume of extraction and dispersive solvents in the mixture, percentage of NaCl added to sample and shaking time after the injection of the extraction and dispersive solvents. The method was characterized for water samples, achieving detection limits lower than 2.4 μg/L. Trueness was checked in river, tap, and bottled water. Dispersive liquid–liquid microextraction combined with MEKC constitutes an easy, cheap, and green alternative for 5‐nitroimidazole analysis in environmental water samples.  相似文献   

8.
Methotrexate (MTX) is widely used for the treatment of many types of cancer. Folinic acid (FNA) and folic acid (FA) were usually simultaneously supplemented with MTX to reduce the side effects of a folate deficiency. This study, for the first time, included on‐line sample preconcentration by stacking and sweeping techniques under reduced or enhanced electric conductivity in the sample region using short chain alkyl imidazolium ionic liquids (ILs) as micelle forming agents for analyte focusing. Both analyte focusing by micelle collapse (AFMC) and sweeping‐MEKC had been investigated for the comparison of their effectiveness to examine simultaneously MTX, FNA and FA in plasma and urine under physiological conditions. In sweeping‐MEKC, the sample solution without micelles was hydrodynamically injected as a long plug into a fused‐silica capillary pre‐filled with phosphate buffer containing 3.0 mol/L of 1‐butyl‐3‐methylimidazolium bromide (BMIMBr). Using AFMC, the analytes were prepared in BMIMBr micellar matrix and hydrodynamically injected into the phosphate buffer without IL micelles. The conductivity ratio between BGE and sample (γ, BGE/sample) was optimized to be 3.0 in sweeping‐MEKC and 0.33 in AFMC resulting the adequate separation of analytes within 4.0 min. To reduce the possibility of BMIMBr adsorption, an appropriate rinsing protocol was used. The limits of detection were calculated as 0.1 ng/mL MTX, 0.05 ng/mL FNA and 0.05 ng/mL FA by sweeping‐MEKC and 0.5 ng/mL MTX, 0.3 ng/mL FNA and 0.3 ng/mL FA by AFMC. The accuracy was tested by recovery in plasma and urine matrices giving values ranging between 90 and 110%. Both stacking and sweeping by BMIMBr could be successfully used for the rapid, selective and sensitive determination of pharmaceuticals in complex matrices due to its fascinating properties, including high conductivity, good thermal stability and ability to form different types of interactions by electrostatic, hydrophobic, hydrogen bonding and π–π interactions. In sweeping‐MEKC, the using of BMIMBr enhanced the γ factor, k retention factor and the injected amount of sample. Consequently, this technique offers particular potential for higher sensitivity by giving 22‐ and 5‐fold sensitivity enhancement factors (SEFs) of MTX compared to CZE and AFMC, respectively.  相似文献   

9.
建立了胶束毛细管电泳(MEKC)在线富集技术灵敏检测三聚氰胺的方法,采用场放大进样(FASS)联用胶束扫集(Sweep)测定多种样品中的三聚氰胺.试样用乙腈反复提取3次,在优化实验条件下,三聚氰胺的检测灵敏度提高了约1000倍,检出限由原来的2 mg/L降到1.8 μg/L(S/N=3).本方法用于配方奶粉和动物饲料中...  相似文献   

10.
A simple and sensitive analytical method for four isomers of glycopyrrolate in rat plasma was developed using cation‐selective exhaustive injection‐sweeping cyclodextrin‐modified electrokinetic chromatography (CSEI‐Sweeping‐CDEKC) for online enrichment combined with dispersive micro‐solid‐phase extraction pretreatment. The CSEI‐Sweeping‐CDEKC was conducted on an uncoated fused silica capillary (40.2 cm × 75 μm) with an applied voltage of –20 kV. The electrophoretic analysis was carried out in 30 mM phosphate solution at pH 2.0 containing 20 mg/mL sulfated‐β‐cyclodextrin and 5% acetonitrile. Under these optimized conditions, the detection limit for racemic glycopyrrolate was found to be 2.0 ng/mL and this method could increase 495‐fold detection sensitivity compared with the traditional injection method. Additionally, the parameters that affected the extraction efficiency of dispersive micro‐solid‐phase extraction were also examined systematically. The glycopyrrolate isomers in rat plasma samples as low as 0.0625 μg/mL were able to be separated and detected by capillary electrophoresis with the aid of CSEI‐sweeping. The findings of this study show that the dispersive micro‐solid‐phase extraction pretreatment coupled with CSEI‐Sweeping‐CDEKC is a rapid and convenient method for analyzing glycopyrrolate isomers in rat plasma.  相似文献   

11.
We recently introduced a pressure‐assisted sweeping‐reversed migration‐EKC (RM‐EKC) method for preconcentration of neutral polar N‐nitrosamines with low affinity for the micellar phase. The type of surfactant and phase ratio are dominant factors in dictating the magnitude of interactions between analyte and micellar phase, thus four surfactants (anionic and cationic) with a range of functionalities (SDS, ammonium perfluorooctanoate (APFO), bile salts, and cetyltrimethylammonium chloride (CTAC)) were evaluated for sweeping‐RM‐EKC of highly polar N‐nitrosamines. All gave acceptable results for sweeping‐RM‐EKC when used in high concentrations (≥200 mM) with low EOF. While no single surfactant was superior by all measures, all but the bile salts had useful performance characteristics. APFO showed the narrowest peak widths and highest number of theoretical plates, though two species co‐migrated at all concentrations (25–300 mM); SDS and the cationic surfactant CTAC also showed good separation characteristics and could resolve all peaks, but CTAC had wider separation window. Various types of capillaries coated for EOF control were compared for use with anionic and cationic surfactants. A commercial zero‐EOF capillary coated with a polymer bearing sulfonic acid functional groups showed superior EOF suppression and reproducibility of migration time with all surfactants.  相似文献   

12.
在胶束电动色谱法的基础上,联用阳离子选择性耗尽进样技术,对盐酸异丙嗪和磷酸可待因同时测定的方法进行了研究。考察了pH值、有机溶剂、SDS浓度、进样时间、进样电压等实验条件对分离效果的影响。最佳实验条件为:缓冲体系16%乙腈+80 mmol/L SDS+20 mmol/L NaH2PO4(pH2.4),分离电压为-18 kV,测量波长214 nm,萃取液pH2.4,进样电压10 kV,进样时间100 s。在优化实验条件下,两种物质在8 min内出峰,峰面积RSD不大于4.6%。盐酸异丙嗪、磷酸可待因的线性范围分别为0.50~81.3、0.78~62.5μg/L,检出限分别为0.16、0.12μg/L,相关系数分别为0.998 9、0.998 8。将方法用于可非糖浆中盐酸异丙嗪与磷酸可待因的测定,回收率为96%~106%。  相似文献   

13.
In this study, a simple and reproducible method for enantioseparation and determination of dl ‐tryptophan (dl ‐T rp) was developed by using a partial filling technique in combination with MEKC . The corresponding l ‐T rp specific DNA aptamer was used as a chiral selector. Sodium cholate was used to form the chiral micelles and to enhance the enantioseparation of the enantiomers. Effects of aptamer concentration, filling time, buffer composition, and separation voltage on the enantioseparation were evaluated. The M g2+ and Na+ concentration in separation buffer was found to effectively affect the separation efficiency and reproducibility. Under the optimal conditions, d ‐ and l ‐T rp were completely enantioseparated in less than 9 min. This aptamer‐based partial‐filling approach has the potential to be extended to the separation of other enantiomers after the replacement of corresponding specific aptamers.  相似文献   

14.
The methods for the enantioseparation of m‐nisoldipine, a new 1,4‐dihydropyridine calcium ion antagonist, were developed. The elaborated methods of m‐nisoldipine enantiomers separation were successfully performed using an anionic CD–sulfobutyl ether‐β‐CD (SBE‐β‐CD) or carboxymethyl‐β‐CD as chiral selector. However, the results indicated that SBE‐β‐CD was a better chiral selector for enantioseparation of the neutral m‐nisoldipine. Furthermore, comparing the two SBE‐β‐CDs, the derivative with a higher degree of substitution (DS) of 7.0 induced better enantioresolution than the one with low DS (4.0). In addition, possible chiral recognition mechanisms of dihydropyridines were discussed.  相似文献   

15.
Meng P  Fang N  Wang M  Liu H  Chen DD 《Electrophoresis》2006,27(16):3210-3217
Cation-selective exhaustive injection (CSEI) is used as an on-line concentration method for the high-sensitivity analysis of illicit amphetamines using CE. Optimum conditions for the determination of amphetamine, methamphetamine and methylenedioxy-methamphetamine were investigated. Sodium dodecyl sulfate (25 mM) in 100 mM phosphate buffer (pH 2.9) with 20% methanol as organic additive was used as the background electrolyte for CE separation. The LOD, based on an S/N of 3:1, was about 0.01 microg/mL using normal capillary micellar electrokinetic chromatography, while by using CSEI in combination with micellar sweeping the sensitivity increased up to 1000-fold with the LOD lower than 50 pg/mL. The reproducibility of CSEI combined with micellar sweeping for analyzing amphetamines was satisfactory (relative standard deviation around 10% by using area ratios against an internal standard). This method is highly sensitive and can be used to analyze trace amount amphetamines in human hair.  相似文献   

16.
A practical chiral CE method, using sulfated‐β‐CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused‐silica capillary of (effective length 40 cm) × 50 μm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated‐β‐CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS‐glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%).  相似文献   

17.
In this study, a new CE method, employing a binary system of trimethyl‐β‐CD (TM‐β‐CD) and a chiral amino acid ester‐based ionic liquid (AAIL), was developed for the chiral separation of seven 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (NSAIDs). In particular, the enantioseparation of ibuprofen, ketoprofen, carprofen, indoprofen, flurbiprofen, naproxen, and fenoprofen was improved significantly by supporting the BGE with the chiral AAIL l ‐alanine tert butyl ester lactate (l ‐AlaC4Lac). Parameters, such as concentrations of TM‐β‐CD and l ‐AlaC4Lac, and buffer pH, were systematically examined in order to optimize the chiral separation of each NSAID. It was observed that the addition of the AAIL into the BGE improved both resolution and efficiency significantly. After optimization of separation conditions, baseline separation (Rs>1.5) of five of the analytes was achieved in less than 11 min, while the resolution of ibuprofen and flurbiprofen was approximately 1.2. The optimized enantioseparation conditions for all analytes involve a BGE of 5 mM sodium acetate/acetic acid (pH 5.0), an applied voltage of 30 kV, and a temperature of 20°C. In addition, the results obtained by computing the %‐RSD values of the EOF and the two enantiomer peaks, demonstrated excellent run‐to‐run, batch‐to‐batch, and day‐to‐day reproducibilities.  相似文献   

18.
The application of chemical‐modified gold nanoparticles (GNPs) as chiral selector for the enantioseparation based on pseudostationary phase‐CEC (PSP‐CEC) is presented. GNPs modified by thiolated β‐CD were characterized by NMR and FT‐IR. The nanoparticle size was determined to be of 9.5 nm (+2.5 nm) by Transmission Electron Microscopy (TEM) and UV spectra. Four pairs of dinitrophenyl‐labeled amino acid enantiomers (DL‐Val, Leu, Glu and Asp) and three pairs of drug enantiomers (RS‐chlorpheniramine, zopiclone and carvedilol) were analyzed by using modified GNPs as the chiral selector in PSP‐CEC. Good theoretical plate number (up to 2.4×105 per meter) and separation resolution (up to 4.7) were obtained even with low concentration of modified GNPs (0.8–1.4 mg/mL). The corresponding concentration of β‐CD in the buffer was only 0.30?0.53 mM, which was much lower than the optimum concentration of 15 mM if pure β‐CD was used as chiral selector. Our results showed that thiolated β‐CD modified GNPs have more sufficient interaction with the analytes, resulting in significant enhancement of enantioseparation. The study shed light on potential usage of chemical modified GNPs as chiral selector for enantioseparation based on PSP‐CEC.  相似文献   

19.
A novel preconcentration/separation approach, which online combined CZE with CD‐modified MEKC, was developed for simultaneous enhancing resolving power and detection sensitivity. CZE with cation‐selective exhaustive injection and transient ITP preconcentration was used as the first dimension, from which the effluent fractions were further analyzed by CD‐modified MEKC acting as the second dimension. As the key to successful integration of CZE with MEKC, a new interface was designed and electroaccumulation focusing strategy was employed to avoid analyte band diffusion at the interface. The comprehensive 2‐D system was successfully established with only one high voltage and four electrodes. The grouping of two orthogonal separation techniques, together with analytes preconcentration techniques, significantly enhanced resolution and sensitivity for 2‐D separation of cationic compounds. The resulting electrophoregram was quite different from that of either single CZE or MEKC. Up to 14 000‐ to 35 000‐fold improvement in sensitivity was obtained relative to conventional electrokinetic injection method. The limits of detection (S/N=3) were in the range of 0.03–0.1 μg/L. The number of theoretical plates was in the range of 103 000–184 000. This method was successfully applied to the analysis of trace cationic cardiovascular drugs in wastewater.  相似文献   

20.
Cation‐selective exhaustive injection and sweeping followed by a MEKC separation is evaluated for the sensitive analysis of 5‐nitroimidazoles in untreated human serum and urine. Deproteinized serum and urine samples were diluted 76 and 143 times, respectively, in a low‐conductivity solvent (5.00 mM orthophosphoric acid containing 5.0% v/v methanol). Samples were electrokinetically injected at 9.8 kV for 632 s in a previously conditioned fused‐silica capillary (65.0 cm × 50 μm id). Separation was performed at –30 kV and 20°C using 44 mM phosphate buffer (pH 2.5), 123 mM SDS, and 8% v/v tetrahydrofurane as BGE. Signals were monitored at 276 nm and peak area was selected as analytical response. Good linearity (R2 ≥ 0.988) and LODs lower than 1.5 and 1.8 μg/mL were achieved in serum and urine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号