共查询到20条相似文献,搜索用时 15 毫秒
1.
Li Ming Dong Gong Xiong Liao Ming Jing Wang Xi Gao Jian 《中国化学快报》2008,19(2):230-232
Block copolymers with different backbone compositions have been prepared by the condensation of dimethylamino terminated poly(dimethylsiloxane) (PDMS) and hydroquinone terminated poly(phthalazinone ether nitrile) (PPEN) in the presence of chlorobenzcne/N-methyl pyrrolidone (NMP) as solvents. The products were characterized by FTIR, ^1H NMR and gel permeation chromatography. Differential scanning calorimetry analysis indicated that the block copolymers showed separated microphase. 相似文献
2.
《Journal of separation science》2017,40(23):4636-4644
Recombinant human erythropoietin is an important therapeutic protein with high economic interest due to the benefits provided by its clinical use for the treatment of anemias associated with chronic renal failure and chemotherapy. In this work, a poly(norepinephrine)‐coated open tubular column was successfully prepared based on the self‐polymerization of norepinephrine under mild alkaline condition, the favorable film forming and easy adhesive properties of poly(norepinephrine). The poly(norepinephrine) coating was characterized by scanning electron microscopy and measurement of the electro‐osmotic flow. The thickness of the coating was about 431 nm. The electrochromatographic performance of the poly(norepinephrine)‐coated open tubular column was evaluated by separation of proteins. Some basic and acidic proteins including two variants of bovine serum albumin and two variants of β‐lactoglobulin achieved separation in the poly(norepinephrine)‐coated open tubular column. More importantly, the column demonstrated separation ability for the glycoforms of recombinant human erythropoietin. In addition, the column demonstrated good repeatability with the run‐to‐run, day‐to‐day, and column‐to‐column relative standard deviations of migration times of proteins less than 3.40%. 相似文献
3.
An approach for improving the separation performance of the enantioseparation by CE with vancomycin as chiral selector is described. In the present method, a solution of poly(dimethylacrylamide) (PDMA) was used for dynamic coating of the capillary wall to minimize the adsorption of vancomycin onto the capillary wall, and to depress the EOF. Compared with the bare fused-silica capillaries and the capillaries coated with the polycationic polymer hexadimethrine bromide (HDB), the PDMA-coated capillary displayed the best separation performance. The resulting coating could withstand hundreds of runs without losing its function. Moreover, a partial filling technique was applied to avoid interference in detection caused by the presence of vancomycin in the buffer. The separation time was shortened when a short-end-injection technique was applied. Several parameters such as buffer pH, vancomycin concentration and plug length of the vancomycin solution for the separation were optimized. Under the optimal conditions, all tested enantiomers, including FMOC amino acids derivatives, ketoprofen and fenoprofen, were baseline-separated in less than 4.2 min. 相似文献
4.
Assembly of poly(dopamine)/poly(acrylamide) mixed coatings by a single‐step surface modification strategy and its application to the separation of proteins using capillary electrophoresis 下载免费PDF全文
Lijuan Chen Yalin Zhang Lin Tan Songtao Liu Yanmei Wang 《Journal of separation science》2015,38(16):2915-2923
In this work, a facile approach was developed to modify a fused‐silica capillary inner surface based on poly(dopamine) and poly(acrylamide) mixed coatings for protein separation by capillary electrophoresis. The surface morphology, thickness, and chemical components of poly(dopamine)/poly(acrylamide) mixed coatings on glass slides and silicon wafers were studied by atom force microscopy, ellipsometry, and X‐ray photoelectron spectroscopy, respectively. The hydrophilicity and stability of the mixed coatings on glass slides were investigated by static water contact angle measurements. A comparative study of electroosmotic flow showed that the poly(dopamine)/poly(acrylamide) mixed coatings could provide effective suppression of electroosmotic flow. Meanwhile, the fast and efficient separations of the mixture of four alkaline proteins, the mixture of acidic, basic, and neutral proteins and egg white proteins were obtained by capillary electrophoresis. Furthermore, the consecutive protein separation runs and low RSDs of migration time demonstrated that these poly(dopamine)/poly(acrylamide) mixed coatings were capable of minimizing protein adsorption during the protein separation by using capillary electrophoresis. 相似文献
5.
In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. 相似文献
6.
We have synthesized new poly(arylene ether sulfone) (PAES) and polydimethylsiloxane (PDMS) segmented block copolymers where the PAES segments contain 20–30% of 4,4′-dihydroxyterphenol (DHTP) and 70–80% of bisphenol A (BA) units. The tensile and thermal properties of these new polymeric materials were measured and were compared to those of existing bisphenol A PAES–PDMS segmented block copolymers (BA PAES-b-PDMS). Also, a high molecular weight BA–DHTP PAES random copolymer containing 80% BA and 20% DHTP was prepared and its properties were compared to Udel®, a commercial PAES based on BA. The BA–DHTP PAES random copolymer had a significantly higher modulus, 1800 MPa and a higher Tg, 196 °C when compared to Udel®. In the segmented block copolymer materials, increased modulus and tensile strain at break (elongation) were also found when DHTP was incorporated into the PAES segments. 相似文献
7.
A PDMS/poly(vinylalcohol) (PDMS/PVA) film prepared through a sol–gel process was coated on stir bars for sorptive extraction, followed by liquid desorption and large volume injection–GC–flame photometric detector (LVI–GC–FPD) for the determination of five organophosphorus pesticides (OPPs) (phorate, fenitrothion, malathion, parathion, and quinalphos) in honey. The preparation reproducibility of PDMS/PVA‐coated stir bar ranged from 4.3 to 13.4% (n = 4) in one batch, and from 6.0 to 12.6% (n = 4) in batch to batch. And one prepared stir bar can be used for more than 50 times without apparent coating loss. The significant parameters affecting stir bar sorptive extraction (SBSE) were investigated and optimized. The LODs for five OPPs ranged from 0.013 (parathion) to 0.081 μg/L (phorate) with the RSDs ranging from 5.3 to 14.2% (c = 1 μg/L, n = 6). The proposed method was successfully applied to the analysis of five OPPs in honey. 相似文献
8.
Brush‐type chiral stationary phases (CSP) have been prepared both from a silica monolith and, separately, from 10 μm porous silica beads via a process of in‐column modification including attachment of the chiral selector via copper‐catalyzed azide–alkyne cycloaddition. Azide functionalities were first introduced on the pore surface of each type of support by reaction with 3‐(azidopropyl)trimethoxysilane, followed by immobilization of a proline‐derived chiral selector containing an alkyne moiety. This functionalization reaction was carried out in dimethylformamide (DMF) in the presence of catalytic amounts of copper (I) iodide. The separation performance of these triazole linked stationary phases was demonstrated in enantioseparations of four model analytes, which afforded separation factors as high as 11.4. 相似文献
9.
《Journal of separation science》2018,41(6):1424-1432
A chiral capillary monolithic column for enantiomer separation in capillary electrochromatography was prepared by coating cellulose tris(3,5‐dimethylphenylcarbamate) on porous glycidyl methacrylate‐co‐ethylene dimethacrylate monolith in capillary format grafted with chains of [2(methacryloyloxy)ethyl] trimethylammonium chloride. The surface modification of the monolith by the photografting of [2(methacryloyloxy)ethyl] trimethylammonium chloride monomer as well as the coating conditions of cellulose tris(3,5‐dimethylphenylcarbamate) onto the grafted monolithic scaffold were optimized to obtain a stable and reproducible chiral stationary phase for capillary electrochromatography. The effect of organic modifier (acetonitrile) in aqueous mobile phase for the enantiomer separation by capillary electrochromatography was also investigated. Several pairs of enantiomers including acidic, neutral, and basic analytes were tested and most of them were partially or completely resolved under aqueous mobile phases. The prepared monolithic chiral stationary phases exhibited a good stability, repeatability, and column‐to‐column reproducibility, with relative standard deviations below 11% in the studied electrochromatographic parameters. 相似文献
10.
A novel covalent strategy was developed to modify the poly(dimethylsiloxane) (PDMS) surface. Briefly, dextran was selectively oxidized to aldehyde groups with sodium periodate and subsequently grafted onto amine-functionalized PDMS surface via Schiff base reaction. As expected, the coated PDMS surface efficiently prevented the biomolecules from adsorption. Electro-osmotic flow (EOF) was successfully suppressed compared with that on the native PDMS microchip. Moreover, the stability of EOF was greatly enhanced and the hydrophilicity of PDMS surface was also improved. To apply thus-coated microchip, the separation of peptides, protein and neurotransmitters was investigated in detail. For comparison, these analytes were also measured on the native PDMS microchips. The results demonstrated that these analytes were efficiently separated and detected on the coated PDMS microchips. Furthermore, the relative standard deviations of their migration times for run-to-run, day-to-day, and chip-to-chip reproducibilities were in the range of 0.6-2.7%. In addition, the coated PDMS microchips showed good stability within 1 month. 相似文献
11.
Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation 总被引:1,自引:0,他引:1
A poly(dimethylsiloxane) (PDMS) microfluidic chip surface was modified by multilayer-adsorbed and heat-immobilized poly(vinyl alcohol) (PVA) after oxygen plasma treatment. The reflection absorption infrared spectrum (RAIRS) showed that 88% hydrolyzed PVA adsorbed more strongly than 100% hydrolyzed one on the oxygen plasma-pretreated PDMS surface, and they all had little adsorption on original PDMS surface. Repeating the coating procedure three times was found to produce the most robust and effective coating. PVA coating converted the original PDMS surface from a hydrophobic one into a hydrophilic surface, and suppressed electroosmotic flow (EOF) in the range of pH 3-11. More than 1,000,000 plates/m and baseline resolution were obtained for separation of fluorescently labeled basic proteins (lysozyme, ribonuclease B). Fluorescently labeled acidic proteins (bovine serum albumin, beta-lactoglobulin) and fragments of dsDNA phiX174 RF/HaeIII were also separated satisfactorily in the three-layer 88% PVA-coated PDMS microchip. Good separation of basic proteins was obtained for about 70 consecutive runs. 相似文献
12.
Sang Jin Shin Young Chang Yu Ja Deok Seo Sung Ju Cho Ji Ho Youk 《Journal of polymer science. Part A, Polymer chemistry》2014,52(11):1607-1613
Amphiphilic, biocompatible poly(N‐vinylpyrrolidone)‐b‐poly(l ‐lactide) (PVP‐b‐PLLA) block polymers were synthesized at 60 °C using a hydroxyl‐functionalized N,N‐diphenyldithiocarbamate reversible addition–fragmentation chain transfer (RAFT) agent, 2‐hydroxyethyl 2‐(N,N‐diphenylcarbamothioylthio)propanoate (HDPCP), as a dual initiator for RAFT polymerization and ring‐opening polymerization (ROP) in a one‐step procedure. 4‐Dimethylamino pyridine was used as the ROP catalyst for l ‐lactide. The two polymerization reactions proceeded in a controlled manner, but their polymerization rates were affected by the other polymerization process. This one‐step procedure is believed to be the most convenient method for synthesizing PVP‐b‐PLLA block copolymers. HDPCP can also be used for the one‐step synthesis of poly(N‐vinylcarbazole)‐b‐PLLA block copolymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1607–1613 相似文献
13.
Elisabetta Ranucci Giovanna Capuano Amedea Manfredi Paolo Ferruti 《Journal of polymer science. Part A, Polymer chemistry》2016,54(13):1919-1928
The radical polymerization of 1‐vinylpyrrolidin‐2‐one (NVP) in poly(lactic‐co‐glycolic acid) (PLGA) 50:50 at 100 °C leads to amphiphilic PLGA‐g‐PVP copolymers. Their composition is determined by FT‐IR spectroscopy. Thermogravimetric analyses agree with FT‐IR determinations. Saponification of the PLGA‐g‐PVP polyester portion allows isolating the PVP side chains and measuring their molecular weight, from which the average chain transfer constant (CT) of the PLGA units is estimated. The MALDI‐TOF spectra of PVP reveal the presence at one chain end of residues of either glycolic acid‐ or lactic acid‐ or lactic/glycolic acid dimers, trimers and one tetramer, the other terminal being hydrogen. This unequivocally demonstrates that grafting occurred. Accordingly, the orthogonal solvent pair ethyl acetate—methanol, while separating the components of PLGA/PVP intimate mixtures, fails to separate pure PVP or PLGA from the reaction products. All PLGA‐g‐PVP and PLGA/PLGA‐g‐PVP blends, but not PLGA/PVP blends, give long‐time stable dispersions in water. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1919–1928 相似文献
14.
15.
A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent. 相似文献
16.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(1):50-58
Conducting nanofiber composed of poly(vinyl alcohol) (PVA), graphene quantum dots (GQDs) and poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared for symmetrical supercapacitor through electrospinning and electropolymerization techniques. The formation of PVA nanofibers with the addition of GQDs was excellently prepared with the average diameter of 55.66 ± 27 nm. Field emission scanning electron microscopy images revealed that cauliflower‐like structure of PEDOT was successfully coated on PVA‐GQD electrospun nanofibers. PVA‐GQD/PEDOT nanocomposite exhibited the highest specific capacitance of 291.86 F/g compared with PVA/PEDOT (220.73 F/g) and PEDOT (161.48 F/g). PVA‐GQD/PEDOT also demonstrated a high specific energy and specific power of 16.95 and 984.48 W/kg, respectively, at 2.0 A/g current density. PVA‐GQD/PEDOT exhibited the lowest resistance of charge transfer (Rct) and equivalent series resistance compared with PEDOT and PVA/PEDOT, indicating that the fast ion diffusion between the electrode and electrolyte interface. PVA‐GQD/PEDOT nanocomposite also showed an excellent stability with retention of 98% after 1000 cycles. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 50–58 相似文献
17.
Zoltn‐Istvn Szab Rbert Ludmerczki Bla Fiser Bla Noszl Gerg Tth 《Electrophoresis》2019,40(15):1897-1903
Pressure‐assisted stereospecific capillary electrophoresis method was developed for the determination of enantiomeric purity of the antiparkinsonian agent (R)‐rasagiline. The optimized method, 50 mM glycine‐HCl buffer pH 2, supplied with 30 mM sulfobutylether‐β‐cyclodextrin, at 35°C, applying 12 kV in reversed polarity, and –8 mbar pressure (vacuum), short‐end injection with ‐25 mbar × 2 s, was successful for baseline separation of rasagiline enantiomers (Rs = 3.5 ± 0.1) in a short analysis time. The method was validated according to current guidelines and proved to be reliable, linear, precise and accurate for determination of 0.15% S‐enantiomer as chiral impurity in R‐rasagiline sample, as well as quantification of the eutomer. Method application was tested on a commercial tablet formulation. Determination of spatial structure of diastereomeric associates was based on 1H and 2D ROESY NMR, indicating that the aromatic moiety of the molecule can enter the cyclodextrin cavity. NMR titration and molecular modeling revealed that S‐rasagiline formed a more stable inclusion complex with sulfobutylether‐β‐cyclodextrin, than its antipode, which is in agreement with electrophoretic results. 相似文献
18.
Synthesis and enantioseparation behaviors of novel immobilized 3,5‐dimethylphenylcarbamoylated polysaccharide chiral stationary phases 下载免费PDF全文
Yi Tan Jun Fan Chun Lin Hongsheng Tu Shengrun Zheng Weiguang Zhang 《Journal of separation science》2014,37(5):488-494
Two new polysaccharide‐derived chiral selectors, namely, 6‐azido‐6‐deoxy‐3,5‐dimethylphenylcarbamoylated amylose and 6‐azido‐6‐deoxy‐3,5‐dimethylphenyl carbamoylated cellulose, were synthesized under homogeneous conditions and immobilized onto aminized silica gel by the Staudinger reaction, resulting in two new immobilized polysaccharide chiral stationary phases (CSPs). Their enantioseparation performances were investigated under normal‐phase mode by HPLC. Among 17 analytes, baseline separations of 12 pairs of enantiomers are achieved on the immobilized cellulose CSP, which demonstrates that this new cellulose material exhibits almost the same enantioseparation performance as the coated cellulose CSP. In addition, the amylose‐derived CSP presents limited enantiorecognition ability but certain complementarity with the immobilized and coated cellulose‐based materials. Neither metolachlor nor paclitaxel side chain acids are separated on two cellulose‐derived CSPs, but effective separations are obtained on the immobilized amylose column. 相似文献
19.
Dense membranes made by crosslinking of poly(vinyl alcohol) (PVA) with poly(acrylic acid) (PAA) were prepared and tested in pervaporation and differential permeation of water–alcohol mixtures. Instead of a decrease of permeation flux as generally observed with most crosslinking agents, an increase in the permeability was observed with PAA crosslinked membranes at low PAA contents. The permeation flux increases with PAA contents in the polymer with no selectivity reduction for membranes containing less than 15 wt. % PAA. The membranes show good performances to water–2-propanol and water–ethanol mixtures, i.e. high fluxes and high selectivities to pure water. The membranes were stable and highly permeable to water. The enhancement of the permeability of PVA can be explained by a reduced crystallinity and an improved diffusivity due to the presence of PAA. 相似文献
20.
Yanjin Zhu Zushun Xu Changfeng Yi 《Journal of polymer science. Part A, Polymer chemistry》2008,46(8):2658-2666
Using 2‐chloropropionamide derivative of poly(propyleneimine) dendrimer DAB‐dendr‐(NH2)32 (DAB‐32‐Cl) as the macroinitiator, atom transfer radical polymerization of styrene was successfully carried out in DMF medium. The monodisperse poly(propyleneimine)–polystyrene (dendrimer–PSt) particles with diameters smaller than 100 nm could be prepared. The morphology, size, and size distribution of the dendrimer–PSt particles were characterized by transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). The effects of reaction temperature, the ratio of St/macroinitiator, and reaction time on the size, and size distribution of the dendrimer–PSt nanoparticles were investigated. In a selective solvent (DMF/H2O), polymers can self‐assemble into different aggregate configurations such as regular microsphere and wire‐like thread. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2658–2666, 2008 相似文献