首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Micro free flow electrophoresis (µFFE) is a valuable technique capable of high throughput rapid microscale electrophoretic separation along with mild operating conditions. However, the stream flow separation nature of free flow electrophoresis affects its separation performance with additional stream broadening due to sample stream deflection. To reduce stream broadening and enhance separation performance of µFFE, we presented a simple microfluidic device that enables injection bandwidth control. A pinched injection was formed in the reported µFFE system using operating buffer at sample flow rate ratio (r) setting. Initial bandwidth at the entrance of separation chamber can be shrunk from 800 to 30 µm when r increased from 1 to 256. Stream broadening at the exit of separation chamber can be reduced by about 96% when r increased from 4 to 128, according to both theoretical and experimental results. Moreover, the separation resolution for a dye mixture was enhanced by a factor of 4 when r increased from 16 to 128, which corresponded to an 80% reduction in sample initial bandwidth. Furthermore, a similar enhancement on amino acids separation was obtained by using injection control in the reported µFFE device and readily integrated into online/offline sample preparation and/or downstream analysis procedures.  相似文献   

2.
In this article, an approach has been developed for the analysis of some small peptides with similar pI values by CE‐ESI‐MS based on the online concentration strategy of dynamic pH junction. The factors affected on the separation, detection and online enrichment, such as BGE, injection pressure, sheath flow liquid and separation voltage have been investigated in detail. Under the optimum conditions, i.e. using 0.5 mol/L formic acid (pH 2.15) as the BGE, preparing the sample in 50 mM ammonium acetate solution (pH 7.5), 50 mbar of injection pressure for 300 s, using 7.5 mM of acetic acid in methanol–water (80% v/v) solution as the sheath flow liquid and 20 kV as the separation voltage, four peptides with similar pI values, such as L ‐Ala‐L ‐Ala (pI=5.57), L ‐Leu‐D ‐Leu (pI=5.52), Gly‐D ‐Phe (pI=5.52) and Gly‐Gly‐L ‐Leu (pI=5.52) achieved baseline separation within 18.3 min with detection limits in the range of 0.2–2.0 nmol/L. RSDs of peak migration time and peak area were in the range of 1.45–3.57 and 4.93–6.32%, respectively. This method has been applied to the analysis of the four peptides in the spiked urine sample with satisfactory results.  相似文献   

3.
A one‐step etching method was developed to fabricate glass free‐flow electrophoresis microchips with a rectangle separation microchamber (42 mm‐long, 23 mm‐wide and 28 μm‐deep), in which two glass bridges (0.5 mm‐wide) were made simultaneously to prevent bubbles formed by electrolysis near the Pt electrode from entering the separation chamber. By microchip free‐flow zone electrophoresis, with 200 V voltage applied, the baseline separation of three FITC labeled proteins, ribonuclease B, myoglobin and β‐lactoglobulin, was achieved, with resolution over 1.78. Furthermore, with 2.5 mM Na2SO4 added into the electrode buffer to form higher electrical field strength across separation microchamber than electrode compartments, similar resolution of samples was achieved with the applied voltage decreased to 75 V, which could obviously decrease Joule heat during continuous separation. All these results demonstrate that the free‐flow electrophoresis microchip fabricated by one‐step etching method is suitable for the continuous separation of proteins, which might become an effective pre‐fractionation method for proteome study.  相似文献   

4.
J Shao  LY Fan  CX Cao  XQ Huang  YQ Xu 《Electrophoresis》2012,33(14):2065-2074
Interval free‐flow zone electrophoresis (FFZE) has been used to suppress sample band broadening greatly hindering the development of free‐flow electrophoresis (FFE). However, there has been still no quantitative study on the resolution increase of interval FFZE. Herein, we tried to make a comparison between bandwidths in interval FFZE and continuous one. A commercial dye with methyl green and crystal violet was well chosen to show the bandwidth. The comparative experiments were conducted under the same sample loading of the model dye (viz. 3.49, 1.75, 1.17, and 0.88 mg/h), the same running time (viz. 5, 10, 15, and 20 min), and the same flux ratio between sample and background buffer (= 10.64 × 10?3). Under the given conditions, the experiments demonstrated that (i) the band broadening was evidently caused by hydrodynamic factor in continuous mode, and (ii) the interval mode could clearly eliminate the hydrodynamic broadening existing in continuous mode, greatly increasing the resolution of dye separation. Finally, the interval FFZE was successfully used for the complete separation of two‐model antibiotics (herein pyoluteorin and phenazine‐1‐carboxylic acid coexisting in fermentation broth of a new strain Pseudomonas aeruginosa M18), demonstrating the feasibility of interval FFZE mode for separation of biomolecules.  相似文献   

5.
Uneven flow in free‐flow electrophoresis (FFE) with a gravity‐induced fraction collector caused by air bubbles in outlets and/or imbalance of the surface tension of collecting tubes would result in a poor separation. To solve these issues, this work describes a novel collector for FFE. The collector is composed of a self‐balance unit, multisoft pipe flow controller, fraction collector, and vacuum pump. A negative pressure induced continuous air flow rapidly flowed through the self‐balance unit, taking the background electrolyte and samples into the fraction collector. The developed collector has the following advantages: (i) supplying a stable and harmonious hydrodynamic environment in the separation chamber for FFE separation, (ii) effectively preventing background electrolyte and sample flow‐back at the outlet of the chamber and improving the resolution, (iii) increasing the preparative scale of the separation, and (iv) simplifying the operation. In addition, the cost of the FFE device was reduced without using a multichannel peristaltic pump for sample collection. Finally, comparative FFE experiments on dyes, proteins, and cells were carried out. It is evident that the new developed collector could overcome the problems inherent in the previous gravity‐induced self‐balance collector.  相似文献   

6.
Graphene oxide nanosheets often bear a wide size distribution. However, it is critical to have nanosheets with narrow size distribution for their unique size‐dependent physiochemical properties, and nanosheets with a narrow size distribution are the cornerstones for application. Therefore, efficient separation methods of graphene nanosheets have been given considerable attention in many scientific areas recently. Free‐flow electrophoresis is extensively used in the separation and purification of biological molecules with continuous flow separation. The charged graphene oxide nanosheets to some extent are very close in size to biological molecules and share similarity in motion behavior in an electric field. Thus, in the present work, we present a new and simple means to separate graphene oxide nanosheets into more mono‐dispersed size groups by using the free‐flow electrophoresis technique. By optimizing the separation conditions, we were able to obtain graphene oxide sheets with narrow size distribution. The separated samples were characterized by atomic force microscopy, and the size measurements were made by using the software “Image Pro Plus.” In addition, a brief discussion is also given into the theoretic background of the separation of graphene oxide according to the size by the technique of preparative free‐flow electrophoresis.  相似文献   

7.
A new kind of flow gating interface (FGI) has been designed for online connection of CE with flow‐through analytical techniques. The sample is injected into the separation capillary from a space from which the BGE was forced out by compressed air. A drop of sample solution with a volume of 75 nL is formed between the outlet of the delivery capillary supplying the solution from the flow‐through apparatus and the entrance to the CE capillary; the sample is hydrodynamically injected into the CE capillary from this drop. The sample is not mixed with the surrounding BGE solution during injection. The functioning of the proposed FGI is fully automated and the individual steps of the injection process are controlled by a computer. The injection sequence lasts several seconds and thus permits performance of rapid sequential analyses of the collected sample. FGI was tested for the separation of equimolar 50 μM mixture of the inorganic cations K+, Ba2+, Na+, Mg2+, and Li+ in 50 mM acetic acid/20 mM Tris (pH 4.5) as BGE. The obtained RSD values for the migration times varied in the range 0.7–1.0% and the values for the peak area were 0.7–1.4%; RSD were determined for ten repeated measurements.  相似文献   

8.
Free‐flow electrophoresis (FFE), a preparative free zone electrophoretic method, was used offline in conjunction with ultrahigh‐resolution FT/ion cyclotron resonance ‐MS to resolve the complexity of Suwannee River fulvic acid (SRFA). Before MS, the FFE separation conditions and the compatibility with ESI were optimized. The constituents in SRFA were effectively separated based on their charge states and sizes. The obtained mass spectra were compared by means of van Krevelen diagrams and the calculated aromaticity indices of the individual constituents were used to describe the distribution of aromatic/unsaturated structures across the FFE‐fractionated samples. The consolidated number of ions observed within the individual SRFA fractions were much higher than those of the bulk samples alone, demonstrating extensive ion suppression effects in bulk SRFA likely also operating in the analysis of complex biogeochemical mixtures in flow injection mode. The FFE approach allows for producing sizable amounts of sample from dilute solutions, which can be easily fractionated into dozens of individual samples with the possibility of further in‐depth characterization.  相似文献   

9.
Theory of field-amplified sample stacking (FASS) also called field-enhanced sample stacking is reevaluated considering the early work of Chien, Burgi and Helmer. The classical theory presented by Chien, Helmer and Burgi predicts the existence of maxima, which are ascribed to the counteracting principles of zone focusing and hydrodynamic dispersion. In contrast to their work, we here focus on cationic analytes separated in an acidic background electrolyte providing a very low electroosmotic flow velocity. Therefore, peak broadening due to differences in the local electroosmotic flow velocities in different compartments of the capillary can be regarded to be negligible. Consequently, peak broadening resulting from hydrodynamic dispersion will not be the dominant limitation of the accessible enrichment efficiency. In our experimental studies we, however, obtain an optimum value for the field enhancement factor (maximum of the enrichment efficiency, when varying the electric conductivity of the sample and the size of the sample injection plug) corresponding to a 10-fold dilution of the BGE in the sample solution. Comparing these experimental data with data modeled according to the revised theory, we show that this limitation of the loadability is caused by the unavoidable decrease of the analyte migration velocity in the BGE compartment of the capillary when injecting of a sample plug of lower electric conductivity (decrease in the local electric field strength). The additional diffusional band broadening limits the obtainable enrichment efficiency.  相似文献   

10.
This paper describes a novel free‐flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self‐balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one‐channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity‐induced pressure due to the difference of buffer surfaces in the GCI and self‐balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE.  相似文献   

11.
Fluoroquinolones are a group of synthetic antibiotics with a broad activity spectrum against mycoplasma, Gram‐positive, and Gram‐negative bacteria. Due to the extensive use of fluoroquinolones in farming and veterinary science, there is a constant need in the analytical methods able to efficiently monitor their residues in food products of animal origin, regulated by Commission Regulation (European Union) no. 37/2010. Herein, field‐enhanced sample injection for sample stacking prior the CZE separation was developed inside a bubble cell capillary for highly sensitive detection of five typical fluoroquinolones in bovine milk. Ethylenediamine was proposed as the main component of BGE for the antibiotics separation. The effect of BGE composition, injection parameters, and water plug length on the field‐enhanced sample injection‐based CE with UV detection was investigated. Under the optimized conditions, described field‐enhanced sample injection‐based CE‐UV analysis of fluoroquinolones provides LODs varying from 0.4 to 1.3 ng/mL. These LOD values are much lower (from 460 to 1500 times) than those obtained by a conventional CE in a standard capillary without bubble cell. The developed method was finally applied for the analysis of fluoroquinolones in low‐fat milk from a Swiss supermarket. Sample recovery values from 93.6 to 106.0% for different fluoroquinolones, and LODs from 0.7 to 2.5 μg/kg, were achieved. Moreover, the proposed ethylenediamine‐based BGE as volatile and compatible with MS system, enabled the coupling of the field‐enhanced sample injection‐based CE with a recently introduced electrostatic spray ionization MS via an iontophoretic fraction collection interface for qualitative fluoroquinolones identification.  相似文献   

12.
The low‐concentration phenazine‐1‐carboxylic acid (PCA) (=0.3 mM) extracted from fermentation broth of Pseudomonas sp. M18 was selected to be purified with a newly facile free flow electrophoresis (FFE) device with gratis gravity. Three factors of pH value and concentration of background buffer, and the cooling circle of FFE device were investigated for the purification of PCA in the FFE device. It was found that the pH value and concentration of background buffer had mild influences on the separation of PCA whether with cooling circle or not. However, the cooling circle had a much greater impact on the separation of PCA. The controlling of the band zone of PCA in FFE chamber would be difficult if without cooling circle, while the controlling would become easy if with cooling circle. Under the optimal conditions (10 mM pH 5.5 phosphate as background buffer, 30 mM pH 5.5 phosphate buffer as electrode solution, 5.46 mL/min background flux, 10 min residence time of injected sample, and 500 V), PCA could be continuously prepared from its impurities with relative high purity. The flux of sample injection was 115 μL/min, viz. 7 mL sample throughput per hour, and the recovery was up to 85%. All of the experiments indicated that the FFE technique was a good alternative tool for the study on natural biological control agents.  相似文献   

13.
Free‐flow electrophoresis is an ideal tool for preparative separations in continuous microflow. With the approach presented herein for coupling free‐flow electrophoresis and mass spectrometry it is now also possible to trace non‐fluorescent compounds and identify them by means of mass spectrometry. The functionality of the method and its potential as an integrated separation unit for microflow synthesis is demonstrated by application to a multicomponent [3+2]‐cycloannulation.  相似文献   

14.
A coaxial flow‐gating interface is described in which the separation capillary passes through the sampling capillary. Continuous flow of the sample solution flowing out of the sampling capillary is directed away from the injection end of the separation capillary by counter‐current flow of the gating solution. During the injection, the flow of the gating solution is interrupted, so that a plug of solution is formed at the inlet into the separation capillary, from which the sample is hydrodynamically injected. Flow‐gating interfaces are originally designed for on‐line connection of capillary electrophoresis with analytical flow‐through methods. The basic properties of the described coaxial flow‐gating interface were obtained in a simplified arrangement in which a syringe pump with sample solution has substituted analytical flow‐through method. Under the optimized conditions, the properties of the tested interface were determined by separation of K+, Ba2+, Na+, Mg2+ and Li+ ions in aqueous solution at equimolar concentrations of 50 μM. The repeatability of the migration times and peak areas evaluated for K+, Ba2+ and Li+ ions and expressed as relative standard deviation did not exceed 1.4%. The interface was used to determine lithium in mineral water and taurine in an energy drink.  相似文献   

15.
A method for the resolution of a peptides mixture including hepcidin‐25, an iron metabolism marker, was developed by CE‐ESI‐MS. Several strategies were tested to optimize peptide separation, such as the addition of cyclodextrins or organic solvents in the BGE or the use of coated capillaries. Best results in terms of resolution, symmetry and efficiency were obtained with a BGE made of 500 mM ammonium acetate pH 4.5/ACN 70:30 v/v. Using the methodology of experimental design, BGE concentration, sheath liquid composition and MS‐coupling parameters were then optimized in order to obtain the best signal intensity for hepcidin. Finally, a 225 mM BGE and a sheath liquid composed of isopropanol/water 80:20 v/v containing 0.5% v/v formic acid were selected as it constitutes the best compromise for selectivity, peak shape and sensitivity.  相似文献   

16.
A simple method for producing a sheath flow cuvette in PDMS suitable for post‐column detection in CE is described. Two types of cuvette were investigated. In the first, the sheath flow channel had a round cross‐section of approximately 635 μm diameter, whereas the second cuvette had a 300×300 μm2 square channel. Both cuvettes produced laminar flows that ensheathed the separation capillary's effluent allowing sensitive fluorescence measurements. The elasticity of the PDMS allowed the 300×300 μm2 square sheath flow channel to expand uniformly and accommodate the larger 330–340 μm od round separation capillary, producing a self‐aligning cuvette with robust mechanical properties. With this cuvette, linear calibrations of over five orders of magnitude and 15–30 zmol fluorescein detection limits were obtained for 12 and 50 μm id capillaries.  相似文献   

17.
With a given free‐flow electrophoresis device, reasonable conditions (electric field strength, carrier buffer conductivity, and flow rate) are crucial for an optimized separation. However, there has been no experimental study on how to choose reasonable general conditions for a free‐flow electrophoresis device with a thermoelectric cooler in view of Joule heat generation. Herein, comparative experiments were carried out to propose the selection procedure of general conditions in this study. The experimental results demonstrated that appropriate conditions were (i) <67 V/cm electric field strength; (ii) lower than 1.3 mS/cm carrier buffer conductivity (Tris‐HCl: 20 mM Tris was titrated by HCl to pH 8.0); and (iii) higher than 3.6 mL/min carrier buffer flow rate. Furthermore, under inappropriate conditions (e.g. 400 V voltage and 40 mM Tris‐HCl carrier buffer), the free‐flow electrophoresis separation would be destroyed by bubbles caused by more Joule heating. Additionally, a series of applications under the appropriate conditions were performed with samples of model dyes, proteins (bovine serum albumin, myoglobin, and cytochrome c), and cells (Escherichia coli, Streptococcus thermophilus, and Saccharomyces cerevisiae). The separation results showed that under the appropriate conditions, separation efficiency was obviously better than that in the previous experiments with randomly or empirically selected conditions.  相似文献   

18.
We have employed a high‐sensitivity off‐line coupled with on‐line preconcentration method, cloud‐point extraction (CPE)/cation‐selective exhaustive injection (CSEI) and sweeping‐MEKC, for the analysis of malachite green. The variables that affect CPE were investigated. The optimal conditions were 250 g/L of Triton X‐100, 10% of Na2SO4 (w/v), heat‐assisted at 60°C for 20 min. We monitored the effects of several of the CSEI‐sweeping‐MEKC parameters – including the type of BGE, the concentrations of SDS, the injection length of the high‐conductivity buffer, and the injection time of the sample – to optimize the separation process. The optimal BGE was 50 mM citric acid (pH 2.2) containing 100 mM SDS. In addition, electrokinetic injection of the sample at 15 kV for 800 s provided both high separation efficiency and enhanced sweeping sensitivity. The sensitivity enhancement for malachite green was 1.9×104 relative to CZE; the coefficients of determination exceeded 0.9928. The LOD, based on an S/N of 3:1, of CSEI‐sweeping‐MEKC was 0.87 ng/mL; in contrast, when using off‐line CPE/CSEI‐sweeping‐MEKC the sensitivity increased to 69.6 pg/mL. This proposed method was successfully applied to determine trace amounts of malachite green in fish water samples.  相似文献   

19.
Typically sweeping reversed migration EKC (RM‐EKC) is used for online enrichment and separation of neutral compounds in CE, however sweeping is not usually suitable for highly polar neutral compounds due to the lack of strong interaction with micellar phase. Since acidic BGE or coated capillaries (BGE pH 2–8) are used to virtually eliminate the EOF, migration of neutral analytes is only through association with the micelles with relatively slow electrophoretic mobility. To decrease the long analysis times that result, an auxiliary pressure can be applied, which also serves to avoid the associated band broadening. In this study, we have modified a commercially available CE instrument to perform pressure‐assisted sweeping. The apparatus described can be used to precisely control the application of pressure, and therefore direction and magnitude of bulk flow in the capillary. This modification allows us to employ longer capillaries and capillaries with larger internal diameter to increase the sensitivity. An optimized method was used for the analysis of a group of seven N‐nitrosamines that have been widely reported in environmental samples and good concentration factors of up to 34 were achieved. When a coated capillary is employed, this method is effective even at neutral pH, making it broadly applicable.  相似文献   

20.
An in‐house flow‐injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2‐morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow‐injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r2) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号