首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of [Cp*TaCl4] (Cp*=eta5-C5Me5) with a sixfold excess of LiBH(4)thf followed by BH3thf in toluene at 100 degrees C led to the isolation of hydrogen-rich metallaboranes [(Cp*Ta)2B4H10] (1), [(Cp*Ta)2B5H11] (2), [(Cp*Ta)2B5H10(C6H4CH3)] (3), and [(Cp*TaCl)2B5H11] (4) in modest yield. Compounds 1-3 are air- and moisture-sensitive but 4 is reasonably stable in air. Their structures are predicted by the electron-counting rules to be a bicapped tetrahedron (1), bicapped trigonal bipyramids (2, 3), and a nido structure based on a closo dodecahedron 4. Yellow tantalaborane 1 has a nido geometry with C2v symmetry and is isostructural with [(Cp*M)2B4H8] (M=Cr and Re); whereas 2 and 3 are C3v-symmetric and isostructural with [(Cp*M)2B5H9] (M=Cr, Mo, W) and [(Cp*ReH)2B5Cl5]. The most remarkable feature of 4 is the presence of a hydride ligand bridging the ditantalum center to form a symmetrical tantalaborane cluster with a long Ta--Ta bond (3.22 A). Cluster 4 is a rare example of electronically unsaturated metallaborane containing four TaHB bonds. All these new metallaboranes have been characterized by mass spectrometry, 1H, 11B, and 13C NMR spectroscopy, and elemental analysis, and the structural types were unequivocally established by crystallographic analysis of 1-4.  相似文献   

2.
From reaction of [(Cp*Ir)2HxCl(4-x)] (x=1, 0) and LiBH4, arachno-[[Cp*IrH2]B3H7](1) is produced in moderate yield concurrently with [Cp*IrH4]. In contrast, reaction of [(Cp*Ir)2H2Cl2] with LiBH4 results in arachno-[[Cp*IrH]2(mu-H)B2H5] (3) in high yield at room temperature but a mixture of 1 and [[Cp*IrH]2(mu-H)BH4] (2) at 0 degrees C. BH3 x THF converts 1 to arachno-[(Cp*IrHB4H9] (4) and 2 to 3 with 1 as a minor product. Further, reaction of 3 with excess of BH3 x THF results in formation of nido-[[Cp*Ir]2-(mu-H)B4H7] (6) formed by loss of H2 from the intermediate arachno-[[Cp*IrH]2B4H8] (5). Reaction of 1 with [Co2(CO)8] permits the isolation of two metallaboranes, arachno-[[Cp*Ir(CO)]-B3H7] (7) and nido-[1-[Cp*Ir]-2,3-Co2-(CO)4(mu-CO)B3H7] (8). Treatment of 4 with [Co2(CO)8] gives only one single mixed-metal metallaborane nido-[1-[Cp*Ir]-2-Co(CO)3B4H7 (9) in high yield. Finally, pyrolysis of 8 results in loss of hydrogen and formation of pileo-[1-[Cp*Ir]-2,3-Co2(CO)5B3H5] (10) with a BH-capped square-pyramidal structure. With kinetic control rational synthesis of a variety metallaboranes has been achieved by varying the number of chlorides in the monocyclopentadienylmetal halide dimer, reaction temperature, types of monoborane, and metal fragment sources.  相似文献   

3.
The reaction of [CpnMCl4?x] (M=V: n=2, x=2; M=Nb: n=1, x=0; Cp=η5‐C5H5) with LiBH4 ? THF followed by thermolysis in the presence of dichalcogenide ligands E2R2 (E=S, Te; R=2,6‐(tBu)2‐C6H2OH, Ph) and 2‐mercaptobenzothiazole (C7H5NS2) yielded dimetallaheteroboranes [{CpV(μ‐TePh)}23‐Te)BH ? thf] ( 1 ), [(CpV)2(BH3S)2] ( 2 ), [(CpNb)2B4H10S] ( 3 ), [(CpNb)2B4H11S(tBu)2C6H2OH] ( 4 ), and [(CpNb)2B4H11TePh] ( 5 ). In cluster 1 , the V2BTe atoms define a tetrahedral framework in which the boron atom is linked to a THF molecule. Compound 2 can be described as a dimetallathiaborane that is built from two edge‐fused V2BS tetrahedron clusters. Cluster 3 can be considered as an edge‐fused cluster in which a trigonal‐bipyramidal unit (Nb2B2S) has been fused with a tetrahedral core (Nb2B2) by means of a common Nb2 edge. In addition, thermolysis of an in‐situ‐generated intermediate that was produced from the reaction of [Cp2VCl2] and LiBH4 ? THF with excess BH3 ? THF yielded oxavanadaborane [(CpV)2B3H83‐OEt)] ( 6 ) and divanadaborane cluster [(CpV)2B5H11] ( 7 ). Cluster 7 exhibits a nido geometry with C2v symmetry and it is isostructural with [(Cp*M)2B5H9+n] (M=Cr, Mo, and W, n=0; M=Ta, n=2; Cp*=η5‐C5Me5). All of these new compounds have been characterized by 1H NMR, 11B NMR, and 13C NMR spectroscopy and elemental analysis and the structural types were established unequivocally by crystallographic analysis of compounds  1 – 4 , 6 , and 7 .  相似文献   

4.
The reaction of [Cp*TaCl(4)], 1 (Cp* = η(5)-C(5)Me(5)), with [LiBH(4)·THF] at -78 °C, followed by thermolysis in the presence of excess [BH(3)·THF], results in the formation of the oxatantalaborane cluster [(Cp*Ta)(2)B(4)H(10)O], 2 in moderate yield. Compound 2 is a notable example of an oxatantalaborane cluster where oxygen is contiguously bound to both the metal and boron. Upon availability of 2, a room temperature reaction was performed with [Fe(2)(CO)(9)], which led to the isolation of [(Cp*Ta)(2)B(2)H(4)O{H(2)Fe(2)(CO)(6)BH}], 3. Compound 3 is an unusual heterometallic boride cluster in which the [Ta(2)Fe(2)] atoms define a butterfly framework with one boron atom lying in a semi-interstitial position. Likewise, the diselenamolybdaborane, [(Cp*Mo)(2)B(4)H(4)Se(2)], 4 was treated with an excess of [Fe(2)(CO)(9)] to afford the heterometallic boride cluster [(Cp*MoSe)(2)Fe(6)(CO)(13)B(2)(BH)(2)], 5. The cluster core of 5 consists of a cubane [Mo(2)Se(2)Fe(2)B(2)] and a tricapped trigonal prism [Fe(6)B(3)] fused together with four atoms held in common between the two subclusters. In the tricapped trigonal prism subunit, one of the boron atoms is completely encapsulated and bonded to six iron and two boron atoms. Compounds 2, 3, and 5 have been characterized by mass spectrometry, IR, (1)H, (11)B, (13)C NMR spectroscopy, and the geometric structures were unequivocally established by crystallographic analysis. The density functional theory calculations yielded geometries that are in close agreement with the observed structures. Furthermore, the calculated (11)B NMR chemical shifts also support the structural characterization of the compounds. Natural bond order analysis and Wiberg bond indices are used to gain insight into the bonding patterns of the observed geometries of 2, 3, and 5.  相似文献   

5.
Thermolysis of an in situ generated intermediate, produced from the reaction of [Cp*MoCl(4)] (Cp* = η(5)-C(5)Me(5)) and [LiBH(4).THF], with excess Te powder yielded isomeric [(Cp*Mo)(2)B(4)TeH(5)Cl] (2 and 3), [(Cp*Mo)(2)B(4)(μ(3)-OEt)TeH(3)Cl] (4), and [(Cp*Mo)(4)B(4)H(4)(μ(4)-BH)(3)] (5). Cluster 4 is a notable example of a dimolybdaoxatelluraborane cluster where both oxygen and tellurium are contiguously bound to molybdenum and boron. Cluster 5 represents an unprecedented metal-rich metallaborane cluster with a cubane core. The dimolybdaheteroborane 2 was found to be very reactive toward metal carbonyl compounds, and as a result, mild pyrolysis of 2 with [Fe(2)(CO)(9)] yielded distorted cubane cluster [(Cp*Mo)(2)(BH)(4)(μ(3)-Te){Fe(CO)(3)}] (6) and with [Co(2)(CO)(8)] produced the bicapped pentagonal bipyramid [(Cp*MoCo)(2)B(3)H(2)(μ(3)-Te)(μ-CO){Co(3)(CO)(6)}] (7) and pentacapped trigonal prism [(Cp*MoCo)(2)B(3)H(2)(μ(3)-Te)(μ-CO)(4){Co(6)(CO)(8)}] (8). The geometry of 8 is an example of a heterometallic boride cluster in which five Co and one Mo atom define a trigonal prismatic framework. The resultant trigonal prism core is in turn capped by two boron, one Te, and one Co atom. In the pentacapped trigonal prism unit of 8, one of the boron atoms is completely encapsulated and bonded to one molybdenum, one boron, and five cobalt atoms. All the new compounds have been characterized in solution by IR, (1)H, (11)B, and (13)C NMR spectroscopy, and the structural types were unambiguously established by crystallographic analysis of 2 and 4-8.  相似文献   

6.
The reinvestigation of an early synthesis of heterometallic cubane-type clusters has led to the isolation of a number of new clusters which have been characterized by spectroscopic and crystallographic techniques. The thermolysis of [(Cp*Mo)(2)B(4)H(4)E(2)] (1: E = S; 2: E = Se; Cp* = η(5)-C(5)Me(5)) in presence of [Fe(2)(CO)(9)] yielded cubane-type clusters [(Cp*Mo)(2)(μ(3)-E)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 4 and 5 (4: E = S; 5: E = Se) together with fused clusters [(Cp*Mo)(2)B(4)H(4)E(2)Fe(CO)(2)Fe(CO)(3)] (8: E = S; 9: E = Se). In a similar fashion, reaction of [(Cp*RuCO)(2)B(2)H(6)], 3, with [Fe(2)(CO)(9)] yielded [(Cp*Ru)(2)(μ(3)-CO)(2)B(2)H(μ-H){Fe(CO)(2)}(2)Fe(CO)(3)], 6, and an incomplete cubane cluster [(μ(3)-BH)(3)(Cp*Ru)(2){Fe(CO)(3)}(2)], 7. Clusters 4-6 can be described as heterometallic cubane clusters containing a Fe(CO)(3) moiety exo-bonded to the cubane, while 7 has an incomplete cubane [Ru(2)Fe(2)B(3)] core. The geometry of both compounds 8 and 9 consist of a bicapped octahedron [Mo(2)Fe(2)B(3)E] and a trigonal bipyramidal [Mo(2)B(2)E] core, fused through a common three vertex [Mo(2)B] triangular face. In addition, thermolysis of 3 with [Mn(2)(CO)(10)] permits the isolation of arachno-[(Cp*RuCO)(2)B(3)H(7)], 10. Cluster 10 constitutes a diruthenaborane analogue of 8-sep pentaborane(11) and has a structural isomeric relationship to 1,2-[{Cp*Ru}(2)(CO)(2)B(3)H(7)].  相似文献   

7.
Trinuclear complexes of group 6, 8, and 9 transition metals with a (μ3‐BH) ligand [(μ3‐BH)(Cp*Rh)2(μ‐CO)M′(CO)5], 3 and 4 ( 3 : M′=Mo; 4 : M′=W) and 5 – 8 , [(Cp*Ru)33‐CO)23‐BH)(μ3‐E)(μ‐H){M′(CO)3}] ( 5 : M′=Cr, E=CO; 6 : M′=Mo, E=CO; 7 : M′=Mo, E=BH; 8 : M′=W, E=CO), have been synthesized from the reaction between nido‐[(Cp*M)2B3H7] (nido‐ 1 : M=Rh; nido‐ 2 : M=RuH, Cp*=η5‐C5Me5) and [M′(CO)5 ? thf] (M′=Mo and W). Compounds 3 and 4 are isoelectronic and isostructural with [(μ3‐BH)(Cp*Co)2(μ‐CO)M′(CO)5], (M′=Cr, Mo and W) and [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2M′′H(CO)3], (M′′=Mn and Re). All compounds are composed of a bridging borylene ligand (B?H) that is effectively stabilized by a trinuclear framework. In contrast, the reaction of nido‐ 1 with [Cr(CO)5 ? thf] gave [(Cp*Rh)2Cr(CO)3(μ‐CO)(μ3‐BH)(B2H4)] ( 9 ). The geometry of 9 can be viewed as a condensed polyhedron composed of [Rh2Cr(μ3‐BH)] and [Rh2CrB2], a tetrahedral and a square pyramidal geometry, respectively. The bonding of 9 can be considered by using the polyhedral fusion formalism of Mingos. All compounds have been characterized by using different spectroscopic studies and the molecular structures were determined by using single‐crystal X‐ray diffraction analysis.  相似文献   

8.
The 16-electron half-sandwich complex [Cp*Ir[S2C2(B10H10)]] (Cp* = eta5-C5Me5) (1a) reacts with [[Rh(cod)(mu-Cl)]2] (cod = cycloocta-1,5-diene, C8H12) in different molar ratios to give three products, [[Cp*Ir[S2C2(B10H9)]]Rh(cod)] (2), trans-[[Cp*Ir[S2C2(B10H9)]]Rh[[S2C2(B10H10)]IrCp*]] (3), and [Rh2(cod)2[(mu-SH)(mu-SC)(CH)(B10H10)]] (4). Complex 3 contains an Ir2Rh backbone with two different Ir-Rh bonds (3.003(3) and 2.685(3) angstroms). The dinuclear complex 2 reacts with the mononuclear 16-electron complex 1a to give 3 in refluxing toluene. Reaction of 1a with [W(CO)3(py)3] (py = C5H5N) in the presence of BF3.EtO2 leads to the trinuclear cluster [[Cp*Ir[S2C2(B10H10)]]2W(CO)2] (5) together with [[Cp*Ir(CO)[S2C2(B10H10)]]W(CO)5] (6), and [Cp*Ir(CO)[S2C2(B10H10)]] (7). Analogous reactions of [Cp*Rh[S2C2(B10H10)]] (1 b) with [[Rh(cod)(mu-Cl)]2] were investigated and two complexes cis-[[Cp*Rh[S2C2(B10H10)]]2Rh] (8) and trans-[[Cp*Rh[S2C2(B10H10)]]2Rh] (9) were obtained. In refluxing THF solution, the cisoid 8 is converted in more than 95 % yield to the transoid 9. All new complexes 2-9 were characterized by NMR spectroscopy (1H, 11B NMR) and X-ray diffraction structural analyses are reported for complexes 2-5, 8, and 9.  相似文献   

9.
From the reactions of Cp*ZrCl(3) with 3 equiv. of LiBH(3)R (R = CH(3), Ph), the organotrihydroborate complexes, Cp*Zr(BH(3)CH(3))(3), 1, and Cp*Zr(BH(3)Ph)(3), 2, were isolated. One of the Zr-H-B bonding interactions in 2 could be described as an intermediate case between the bidentate and tridentate modes. Reactions of and Cp*Zr(BH(4))(3), 3, with Lewis acid B(C(6)F(5))(3) in diethyl ether produced the novel 14-electron ionic compounds [(micro(3)-O)(micro(2)-OC(2)H(5))(3){(Cp*Zr(OC(2)H(5)))(2)(BCH(3))}][HB(C(6)F(5))(3)], 4, and [(micro(3)-O)(micro(2)-OC(2)H(5))(3){(Cp*Zr(OC(2)H(5)))(2)(BOC(2)H(5))}][HB(C(6)F(5))(3)], 5, respectively. These two unique compounds resulted from a sequential cleavage of Zr-H-B bonds of 1 and 3 and C-O bonds of ether followed by the formation of O-B bonds. The solid state single crystal X-ray analyses revealed that both compounds have similar structures. A micro(3)-oxygen bridges two zirconiums and a boron atom. The latter three atoms are further connected by three micro(2)-bridging ethoxy groups giving rise to three four-membered metallacycles within the structure of each cation.  相似文献   

10.
Reaction of Na2O2NN' [H2O2NN' = (2-C5H4N)CH2N[2-HO-3,5-C6H2(t)Bu2]2] with M(BH4)3(THF)3 afforded the dimeric, rare-earth borohydride compounds [M(O2NN')(mu-BH4)(THF)n]2 [M = Y(III), n = 0.5 (1-Y); M = NdIII, n = 1 (1-Nd); M = SmIII, n = 0 (1-Sm)]. For comparison the chloride analogues [M(O2NN')(mu-Cl)(THF)n]2 (2-M; M = La(III) or Sm(III), n = 0; M = Nd(III), n = 1) and the corresponding pyridine adducts [M(O2NN')(mu-X)(py)]2 [X = BH4 (3-M) or Cl (4-M); M = La(III), Nd(III), or Sm(III)] were prepared and structurally characterized for 4-La. Compounds 1-M initiated the ring-opening polymerization of epsilon-caprolactone. The best molecular weight control (suppression of chain transfer) for all three monomers was found for the samarium system 1-Sm. The most effective heterotactic enrichment (Pr) in the polymerization of rac-lactide was found for 1-Y (P(r) = 87%). Compound 1-Nd catalyzed the block copolymerization of epsilon-caprolactone and L- and rac-lactide provided that epsilon-caprolactone was added first. Attempted block polymerization by the addition of L-lactide first, or random copolymerization of a ca. 1:1 mixture of epsilon-caprolactone and L-lactide, gave only a poly(L-lactide) homopolymer.  相似文献   

11.
The reaction of Ln(BH(4))(3)(THF)(3) or LnCl(3)(THF)(3) with 1 equiv of KCp*' ligand (Cp' = C(5)Me(4)n-Pr) afforded the new monocyclopentadienyl complexes Cp*'LnX(2)(THF)(n) (X = BH(4), Ln = Sm, n = 1, 1a, Ln = Nd, n = 2, 1b; X = Cl, Ln = Sm, n = 1, 3a) and [Cp*'LnX(2)](n') (X = BH(4), n' = 6, Ln = Sm, 2a, Ln = Nd, 2b; X = Cl, Ln = Nd, 4b). All these compounds were characterized by elemental analysis and (1)H NMR. Crystals of mixed borohydrido/chloro-bridged [Cp*'(6)Ln(6)(BH(4))(12-x))Cl(x)(THF)(n')] (x = 10, n' = 4, Ln = Sm, 2a', Ln = Nd, 2b'; x = 5, n = 2, Ln = Sm, 2a' ') were also isolated. Compounds 2a, 2b, 2a', 2b', and 2a' were structurally characterized; they all exhibit a hexameric structure in the solid state containing the [Cp*(3)Ln(3)X(5)(THF)] building block. The easy clustering of THF adducts first isolated is illustrative of the well-known bridging ability of the BH(4) group. Hexameric 2a was found to be unstable in the presence of THF vapors; this may be correlated to the opening of unsymmetrical borohydride bridges observed in the molecular structure.  相似文献   

12.
King RB 《Inorganic chemistry》2001,40(12):2699-2704
The metallaboranes (CpM)(2)B(n)H(n+4) (M = Cr, Mo, W; n = 4, 5; Cp = eta(5)-C(5)H(5), eta(5)-C(5)Me(5)), (CpW)(2)B(7)H(9), (CpRe)(2)B(7)H(7), and (CpW)(3)B(8)H(9) have the 2v or 2v + 2 skeletal electrons for closo or isocloso deltahedra (v = number of polyhedral vertices) if the early transition metal vertices are assumed to contribute four or more internal orbitals rather than the usual three internal orbitals for BH vertices. The polyhedra for the metallaboranes (CpM)(2)B(n)H(n+4) (M = Cr, Mo, W; n = 4, 5) are derived from (n + 1)-gonal bipyramids by removal of an equatorial vertex. The deltahedra for the larger metallaboranes (CpW)(2)B(7)H(9), (CpRe)(2)B(7)H(7), and (CpW)(3)B(8)H(9) are derived from the corresponding B(n)H(n)(2)(-) deltahedra (n = 9 and 11 in these cases) by sufficient diamond-square-diamond processes to provide vertices of degrees > or = 6 for each of the CpM vertices. Reasonable skeletal bonding topologies in accord with the availability of skeletal electrons and orbitals consist of surface 2c-2e and 3c-2e bonds supplemented by metal-metal bonding through the center of the polyhedron.  相似文献   

13.
Hydrolysis of [NbCp'Cl(4)] (Cp' = η(5)-C(5)H(4)SiMe(3)) with the water adduct H(2)O·B(C(6)F(5))(3) afforded the oxo-borane compound [NbCp'Cl(2){O·B(C(6)F(5))(3)}] (2a). This compound reacted with [MgBz(2)(THF)(2)] giving [NbCp'Bz(2){O·B(C(6)F(5))(3)}] (2b), whereas [NbCp'Me(2){O·B(C(6)F(5))(3)}] (2c) was obtained from the reaction of [NbCp'Me(4)] with H(2)O·B(C(6)F(5))(3). Addition of Al(C(6)F(5))(3) to solutions containing the oxo-borane compounds [MCp(R)X(2){O·B(C(6)F(5))(3)}] (M = Ta, Cp(R) = η(5)-C(5)Me(5) (Cp*), X = Cl 1a, Bz 1b, Me 1c; M = Nb, Cp(R) = Cp', X = Cl 2a) afforded the oxo-alane complexes [MCp(R)X(2){O·Al(C(6)F(5))(3)}] (M = Ta, Cp(R) = Cp*, X = Cl 3a, Bz 3b, Me 3c; M = Nb, Cp(R) = Cp', X = Cl 4a), releasing B(C(6)F(5))(3). Compound 3a was also obtained by addition of Al(C(6)F(5))(3) to the dinuclear μ-oxo compound [TaCp*Cl(2)(μ-O)](2), meanwhile addition of the water adduct H(2)O·Al(C(6)F(5))(3) to [TaCp*Me(4)] gave complex 3c. The structure of 2a and 3a was obtained by X-ray diffraction studies. Density functional theory (DFT) calculations were carried out to further understand these types of oxo compounds.  相似文献   

14.
The synthetically accessible borohydride complexes (C(5)Me(4)H)(2)Ln(THF)(BH(4)) and (C(5)Me(5))(2)Ln(THF)(BH(4)) (Ln = Sc, Y) were examined as precursors alternative to the heavily-used tetraphenylborate analogs, [(C(5)Me(4)H)(2)Ln][BPh(4)] and [(C(5)Me(5))(2)Ln][BPh(4)], employed in LnA(2)A'/M reduction reactions (A = anion; M = alkali metal) that generate "LnA(2)" reactivity and form reduced dinitrogen complexes [(C(5)R(5))(2)(THF)(x)Ln](2)(μ-η(2):η(2)-N(2)) (x = 0, 1). The crystal structures of the yttrium borohydrides, (C(5)Me(4)H)(2)Y(THF)(μ-H)(3)BH, 1, and (C(5)Me(5))(2)Y(THF)(μ-H)(2)BH(2), 2, were determined for comparison with those of the yttrium tetraphenylborates, [(C(5)Me(4)H)(2)Y][(μ-Ph)(2)BPh(2)], 3, and [(C(5)Me(5))(2)Y][(μ-Ph)(2)BPh(2)], 4. The complex (C(5)Me(4)H)(2)Sc(μ-H)(2)BH(2), 5, was synthesized and structurally characterized for comparison with (C(5)Me(5))(2)Sc(μ-H)(2)BH(2), 6, [(C(5)Me(4)H)(2)Sc][(μ-Ph)BPh(3)], 7, and [(C(5)Me(5))(2)Sc][(μ-Ph)BPh(3)], 8. Structural information was also obtained on the borohydride derivatives, (C(5)Me(4)H)(2)Sc(μ-H)(2)BC(8)H(14), 9, and (C(5)Me(5))(2)Sc(μ-H)(2)BC(8)H(14), 10, obtained from 9-borabicyclo(3.3.1)nonane (9-BBN) and (C(5)Me(4)R)(2)Sc(η(3)-C(3)H(5)), where R = H, 11; Me, 12. The preference of the metals for borohydride over tetraphenylborate binding was shown by the facile displacement of (BPh(4))(1-) in 3, 4, 7, and 8 by (BH(4))(1-) to make the respective borohydride complexes 1, 2, 5, and 6. These results are consistent with the fact that the borohydrides are not as useful as precursors in A(2)LnA'/M reductions of N(2). An unusual structural isomer of [(C(5)Me(4)H)(2)Sc](2)(μ-η(2):η(2)-N(2)), 13', was isolated from this study that shows the variations in ligand orientation that can occur in the solid state.  相似文献   

15.
Ghosh S  Lei X  Shang M  Fehlner TP 《Inorganic chemistry》2000,39(23):5373-5382
The reaction of Cp*ReCl4, [Cp*ReCl3]2, or [Cp*ReCl2]2 (Cp* = eta 5-C5Me5) with LiBH4 leads to the formation of 7-skeletal-electron-pair (7-sep) (Cp*ReH2)2(B2H3)2 (1) together with Cp*ReH6. Compound 1 is metastable and eliminates H2 at room temperature to generate 6-sep (Cp*ReH2)2B4H4 (2). The reaction of 2 with BH3.thf produces 7-sep (Cp*Re)2B7H7, a hypoelectronic cluster characterized previously. Heating of 2 with 1 atm of CO leads to 6-sep (Cp*ReCO)(Cp*ReH2)B4H4 (3). Both 2 and 3 have the same bicapped Re2B2 tetrahedral cluster core structure. Monitoring the reaction of 2 with CO at room temperature by NMR reveals the formation of a 7-sep, metastable intermediate, (Cp*ReCO)(Cp*ReH2)(B2H3)2 (4), which converts to 3 on heating. An X-ray structure determination reveals two isomeric forms (4-cis and 4-trans) in the crystallographic asymmetric unit which differ in geometry relative to the disposition of the metal ancillary ligands with respect to the Re-Re bond. The presence of these isomers in solution is corroborated by the solution NMR data and the infrared spectrum. In both isomers, the metallaborane core consists of fused B2Re2 tetrahedra sharing the Re2 fragment. On the basis of similarities in electron count and spectroscopic data, 1 also possesses the same bitetrahedral structure. The reaction of 2 with CO2(CO)8 results in the formal replacement of the four rhenium hydrides with a 4-electron CO2(CO)5 fragment, thereby closing the open face in 2 to produce the 6-sep hypoelectronic cluster (Cp*Re)2CO2(CO)5B4H4 (5). These reaction outcomes are compared and contrasted with those previously observed for 5-sep (Cp*Cr2)2B4H8.  相似文献   

16.
Treatment of [Et(4)N][M(CO)(6)] (M = Nb, Ta) with I(2) in DME at -78 degrees C produces solutions of the bimetallic anions [M(2micro-I)(3)(CO)(8)](-). Addition of the tripodal phosphine (t)BuSi(CH(2)PMe(2))(3) (trimpsi) followed by refluxing affords (trimpsi)M(CO)(3)I [M = Nb (1), Ta (2)], which are isolable in good yields as air-stable, orange-red microcrystalline solids. Reduction of these complexes with 2 equiv of Na/Hg, followed by treatment with Diazald in THF, results in the formation of (trimpsi)M(CO)(2)(NO) [M = Nb (3), Ta (4)] in high isolated yields. The congeneric vanadium complex, (trimpsi)V(CO)(2)(NO) (5), can be prepared by reacting [Et(4)N][V(CO)(6)] with [NO][BF(4)] in CH(2)Cl(2) to form V(CO)(5)(NO). These solutions are treated with 1 equiv of trimpsi to obtain (eta(2)-trimpsi)V(CO)(3)(NO). Refluxing orange THF solutions of this material affords 5 in moderate yields. Reaction of (trimpsi)VCl(3)(THF) (6) with 4 equiv of sodium naphthalenide in THF in the presence of excess CO provides [Et(4)N][(trimpsi)V(CO)(3)] (7), (trimpsi)V(CO)(3)H, and [(trimpsi)V(micro-Cl)(3)V(trimpsi)][(eta(2)-trimpsi)V(CO)(4)].3THF ([8][9].3THF). All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 2.(1)/(2)THF, 3-5, and [8][9].3THF have been established by X-ray diffraction analyses. The solution redox properties of 3-5 have also been investigated by cyclic voltammetry. Cyclic voltammograms of 3 and 4 both exhibit an irreversible oxidation feature in CH(2)Cl(2) (E(p,a) = -0.71 V at 0.5 V/s for 3, while E(p,a) = -0.55 V at 0.5 V/s for 4), while cyclic voltammograms of 5 in CH(2)Cl(2) show a reversible oxidation feature (E(1/2) = -0.74 V) followed by an irreversible feature (0.61 V at 0.5 V/s). The reversible feature corresponds to the formation of the 17e cation [(trimpsi)V(CO)(2)(NO)](+) ([5](+)()), and the irreversible feature likely involves the oxidation of [5](+)() to an unstable 16e dication. Treatment of 5 with [Cp(2)Fe][BF(4)] in CH(2)Cl(2) generates [5][BF(4)], which slowly decomposes once formed. Nevertheless, [5][BF(4)] has been characterized by IR and ESR spectroscopies.  相似文献   

17.
1,2-Bis(pinacolboryl)benzene (1,2-C(6) H(4) (Bpin)(2) , 2) was synthesized in preparatively useful yields from 1,2-C(6) H(4) Br(2) , iPrO?Bpin, and Mg turnings in the presence of 1,2-C(2) H(4) Br(2) as an entrainer. Compound 2 is a versatile starting material for the synthesis of (un)symmetrically substituted benzenes (i.e., 1,2-C(6) H(4) (Ar(1) )(Ar(2) )) through sequential Suzuki-Miyaura coupling reactions. Alternatively, it can be transformed into bis-borate Li(2) [1,2-C(6) H(4) (BH(3) )(2) ] (3) through reduction with Li[AlH(4) ]. In the crystal lattice, the diethyl ether solvate 3?OEt(2) establishes a columnar structure that is reinforced by an intricate network of B?(μ-H)?Li interactions. Hydride-abstraction from compound 3 with Me(3) SiCl leads to the transient ditopic borane 1,2-C(6) H(4) (BH(2) )(2) , which can either be used in situ for subsequent hydroboration reactions or trapped as its stable NMe(2) Et diadduct (6). In SMe(2) solution, the putative diadduct 1,2-C(6) H(4) (BH(2) ?SMe(2) )(2) is not long-term stable but rather undergoes a condensation reaction to give 9,10-dihydro-9,10-diboraanthracene, HB(μ-C(6) H(4) )(2) BH, and BH(3) . 9,10-Dihydro-9,10-diboraanthracene was isolated from the reaction mixture as its SMe(2) monoadduct (7), which dimerizes in the solid state through two B?H?B bridges ((7)(2) , elucidated by X-ray crystallography). In contrast, hydride-abstraction from compound 3 in THF or CH(2) Cl(2) provides the unique exo-adduct H(2) B(μ-H)(2) B(μ-C(6) H(4) )(2) B(μ-H)(2) BH(2) (8, elucidated by X-ray crystallography). Quantum-chemical calculations on various conceivable isomers of [1,2-C(6) H(4) (BH(2) )(2) ](2) revealed that compound 8 was the most stable of these species. Moreover, the calculations confirmed the experimental findings that the NMe(2) Et diadduct of 1,2-C(6) H(4) (BH(2) )(2) is significantly more stable than the corresponding SMe(2) complex and that the latter complex is not able to compete successfully with borane-dimerization and -condensation. The reaction cascade in SMe(2) , which proceeds from 1,2-C(6) H(4) (BH(2) )(2) to the observed adducts of HB(μ-C(6) H(4) )(2) BH, has been elucidated in detail and the important role of B?C?B-bridged intermediates has been firmly established.  相似文献   

18.
Metalladichalcogenolate cluster complexes [Cp'Co{E(2)C(2)(B(10)H(10))}]{Co2(CO)5} [Cp' = eta5-C5H5, E = S(3a), E = Se(3b); Cp' = eta5-C5(CH3)5, E = S(4a), E = Se(4b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Mo(CO)2] [E = S(5a), Se(5b)], Cp*Co(micro2-CO)Mo(CO)(py)2[E(2)C(2)(B(10)H(10))] [E = S(6a), Se(6b)], Cp*Co[E(2)C(2)(B(10)H(10))]Mo(CO)2[E(2)C(2)(B(10)H(10))] [E = S(7a), Se(7b)], (Cp'Co[E(2)C(2)(B(10)H(10))]W(CO)2 [E(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(8a), E = Se(8b); Cp' = eta5-C5(CH3)5, E = S(9a), E = Se(9b)], {CpCo[E(2)C(2)(B(10)H(10))]}(2)Ni [E = S(10a), Se(10b)] and 3,4-(PhCN(4)S)-3,1,2-[PhCN(4)SCo(Cp)S(2)]-3,1,2-CoC(2)B(9)H(8) 12 were synthesized by the reaction of [Cp'CoE(2)C(2)(B(10)H(10))] [Cp' = eta5-C5H5, E = S(1a), E = Se(1b); Cp' = eta5-C5(CH3)5, E = S(2a), E = Se(2b)] with Co2(CO)8, M(CO)3(py)3 (M = Mo, W), Ni(COD)2, [Rh(COD)Cl]2, and LiSCN4Ph respectively. Their spectrum analyses and crystal structures were investigated. In this series of multinuclear complexes, 3a,b and 4a,b contain a closed Co3 triangular geometry, while in complexes 5a-7b three different structures were obtained, the tungsten-cobalt mixed-metal complexes have only the binuclear structure, and the nickel-cobalt complexes were obtained in the trinuclear form. A novel structure was found in metallacarborane complex 12, with a B-S bond formed at the B(7) site. The molecular structures of 4a, 5a, 6a, 7b, 9a, 9b, 10a and 12 have been determined by X-ray crystallography.  相似文献   

19.
Syntheses, properties, and synthetic applications of 13-vertex closo- and nido-carboranes are reported. Reactions of the nido-carborane salt [(CH2)3C2B10H10]Na2 with dihaloborane reagents afforded 13-vertex closo-carboranes 1,2-(CH2)3-3-R-1,2-C2B11H10 (R = H (2), Ph (3), Z-EtCH=C(Et) (4), E-(t)BuCH=CH (5)). Treatment of the arachno-carborane salt [(CH2)3C2B10H10]Li4 with HBBr2.SMe2 gave both the 13-vertex carborane 2 and a 14-vertex closo-carborane (CH2)3C2B12H12 (8). On the other hand, the reaction of [C6H4(CH2)2C2B10H10]Li4 with HBBr2.SMe2 generated only a 13-vertex closo-carborane 1,2-C6H4(CH2)2-1,2-C2B11H11 (9). Electrophilic substitution reactions of 2 with excess MeI, Br2, or I2 in the presence of a catalytic amount of AlCl3 produced the hexa-substituted 13-vertex carboranes 8,9,10,11,12,13-X6-1,2-(CH2)3-1,2-C2B11H5 (X = Me (10), Br (11), I (12)). The halogenated products 11 and 12 displayed unexpected instability toward moisture. The 13-vertex closo-carboranes were readily reduced by groups 1 and 2 metals. Accordingly, several 13-vertex nido-carborane dianionic salts [nido-1,2-(CH2)3-1,2-C2B11H11][Li2(DME)2(THF)2] (13), [[nido-1,2-(CH2)3-1,2-C2B11H11][Na2(THF)4]]n (13a), [[nido-1,2-(CH2)3-3-Ph-1,2-C2B11H10][Na2(THF)4]]n (14), [[nido-1,2-C6H4(CH2)2-1,2-C2B11H11][Na2(THF)4]]n (15), and [nido-1,2-(CH2)3-1,2-C2B11H11][M(THF)5] (M = Mg (16), Ca (17)) were prepared in good yields. These carbon-atom-adjacent nido-carboranes were not further reduced to the corresponding arachno species by lithium metal. On the other hand, like other nido-carborane dianions, they were useful synthons for the production of super-carboranes and supra-icosahedral metallacarboranes. Interactions of 13a with HBBr2.SMe2, (dppe)NiCl2, and (dppen)NiCl2 gave the 14-vertex carborane 8 and nickelacarboranes [eta5-(CH2)3C2B11H11]Ni(dppe) (18) and [eta5-(CH2)3C2B11H11]Ni(dppen) (19), respectively. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Some were further confirmed by single-crystal X-ray diffraction studies.  相似文献   

20.
Novel intercalation compounds constructed from the common two-dimensional hydrogen-bond-supported layers and functional guests [(H(0.5)phz)(2)[Fe(CA)(2)(H(2)O)(2)].2H(2)O](n)(1), ([Fe(Cp)(2)][Fe(CA)(2)(H(2)O)(2)])(n)(2), ([Fe(Cp*)(2)][Fe(CA)(2)(H(2)O)(2)])(n)(3), and [(TTF)(2)[Fe(CA)(2)(H(2)O)(2)]](n)(4) (H(2)CA = chloranilic acid, phz = phenazine, [Fe(Cp)(2)] = ferrocene, [Fe(Cp*)(2)] = decamethylferrocene, TTF = tetrathiafulvalene) are described. The guest cations are introduced between the ([Fe(CA)(2)(H(2)O)(2)](m-))(l) layers by electrostatic (1-4) and pi-pi stacking (3, 4) interactions. [Fe(Cp*)(2)](+) cations in 3 are stacked on each other making tilted columns which are included in the channel created by the chlorine atoms of CA(2-) dianions. TTF cations in 4 are stacked face to face with two types of S...S distances (type A; 3.579(3) A, and type B; 3.618(3) A) making a columnar structure. The TTF cations in the stacked column have a head-to-tail arrangement with respect to the iron-chloranilate layer. M?ssbauer spectroscopy suggests that [Fe(CA)(2)(H(2)O)(2)](m-) anion in 3 is consistent with high-spin (S = 5/2) iron(III) ions and [Fe(Cp*)(2)](+) in the low-spin (S = 1/2) iron(III) ions. In 4, M?ssbauer spectroscopy shows high-spin iron(II) ions (IS = 1.10 mm.s(-1) and QS = 1.66 mm.s(-1) at 297 K) and high-spin iron(III) ions (IS = 0.42 mm.s(-1) and QS = 1.27 mm.s(-1) at 297 K), suggesting that the anionic layer of iron-chloranilate has a valence-trapped mixed-valence state. At the temperature range of 77-300 K, the compounds 1, 2, and 3 are EPR silent, whereas the EPR spectrum of 4 shows two types of signals with g = 2.008 indicating the radical form of TTF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号