首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five new (2-adamantyl)naphthol derivatives (5-9, quinone methide precursors, QMP) were synthesized and their photochemical reactivity was investigated by preparative photolyses, fluorescence spectroscopy, and laser flash photolysis (LFP). Excitation of QMP 5 to S(1) leads to efficient excited state intramolecular proton transfer (ESIPT) coupled with dehydration, giving quinone methide QM5 which was characterized by LFP (in CH(3)CN-H(2)O, λ(max) = 370 nm, τ = 0.19 ms). On irradiation of QMP 5 in CH(3)OH-H(2)O (4:1), the quantum yield of methanolysis is Φ = 0.70. Excitation of naphthols QMP 6-8 to S(1) in CH(3)CN leads to photoionization and formation of naphthoxyl radicals. In a protic solvent, QMP 6-8 undergo solvent-assisted PT giving QM6 or zwitterion QM8 that react with nucleophiles delivering adducts, but with a significantly lower quantum efficiency. QMP 9 in a protic solvent undergoes two competitive processes, photosolvolysis via QM9 and solvent-assisted PT to carbon atom of the naphthalene giving zwitterion. QM9 has been characterized by LFP (in CH(3)CN-H(2)O, λ(max) > 600 nm, τ = 0.9 ms). In addition to photogenerated QMs, two stable naphthalene QMs, QM10 and QM11 were synthesized thermally and characterized by X-ray crystallography. QM10 and QM11 do not react with H(2)O but undergo acid-catalyzed fragmentation or rearrangement. Antiproliferative activity of 5-9 was investigated on three human cancer cell lines. Exposure of MCF-7 cells treated with 5 to 300 nm irradiation leads to an enhanced antiproliferative effect, in accordance with the activity being due to the formation of QM5.  相似文献   

2.
The title compound undergoes efficient photoaddition of a molecule of a hydroxylic solvent (H(2)O, MeOH, (Me)(2)CHOH) across the 9- and 10-positions of the anthracene moiety to give isolable triphenylmethanol or triphenylmethyl ether type products. The reaction is believed to proceed via a mechanism involving water-mediated formal excited state intramolecular proton transfer (ESIPT) from the phenolic OH to the 10-position of the anthracene ring, generating an o-quinone methide intermediate that is observable by nanosecond laser flash photolysis, and is trappable with nucleophiles. A "water-relay" mechanism for proton transfer seems plausible but cannot be proven directly with the data available. Irradiation in deuterated solvents led to incorporation of one deuterium atom at the methylene position in the photoaddition product, and partial deuterium exchange of the 10-position of recovered starting material, consistent with the proposed formal excited state proton transfer mechanism. The deuterium exchange and photoaddition reach maximum quantum efficiency at approximately 5 M water (in CH(3)CN or CH(3)OH), with no reaction observed in the absence of a hydroxylic solvent, demonstrating the sensitivity of this type of ESIPT to solvent composition.  相似文献   

3.
研究了2-(2′-氨基苯基)苯并咪唑(APBI)氨基中一个H被CH3(E-C),SiH3(E-OSi),NH2(E-N),COH(E-CO),NO2(E-NO2),CF3(E-F),CN(E-CN3),OMe(E-OMe),COCH3(E-CC),Ts(E-S),p-CH3C6H4CO(E-C=O)和p-CH3C6H4NHCO(E-NH)取代后,其基态及激发态分子内质子转移(ESIPT)性质的变化规律.结果表明各衍生物基态最稳定构型为烯醇式构型E,次稳定构型旋转异构体R,酮式构型K只有当取代基为E-CN3,E-F,E-NO2,E-N,E-OMe和E-S时才存在.基态各环的核独立化学位移(NICS)研究表明取代基的引入会影响APBI环电子离域性.所有APBI衍生物都能发生激发态分子内质子转移,当引入取代基为E-CN3,E-N或E-OMe时,所得的APBI衍生物S1态分子内质子转移是无能垒过程;引入取代基为E-C,E-C=O或E-OSi时,对APBI的ESIPT势能面基本无影响,而当取代基为E-CC,E-NH,E-CO,E-F,E-NO2和E-S时,使得S1态APBI的K*构型能量低于E*.  相似文献   

4.
Herein we have employed the MS-CASPT2//CASSCF method to study the S1 excited-state intramolecular proton transfers (ESIPTs) of recently synthesized ortho-hydroxyl GFP core chromophores, i.e. OHIM, CHBDI, and MHBID, and their excited-state relaxation pathways. We have found that in OHIM and CHBDI, the ESIPT process is associated with small barriers of 3.4 and 4.2 kcal/mol; while, in MHBDI, it becomes essentially barrierless. Moreover, we have found two main S1 excited-state radiationless channels. In the first one, the enol S1 species decays to the S0 state via the enol S1/S0 conical intersection after overcoming considerable barriers of 7.0 and 7.7 kcal/mol in OHIM and CHBDI (however, in MHBDI, it is nearly barrierless). In the second one, the keto S1 species is first generated through the ESIPT event; then, it is de-excited into the S0 state in the vicinity of the keto S1/S0 conical intersection. These energetically allowed excited-state decay channels rationalize experimentally observed ultralow fluorescence quantum yields. The insights gained from the present work may help to guide the design of new ortho-hydroxyl GFP core chromophores with improved fluorescence emission and brightness.  相似文献   

5.
Excited-state potential energy surface (PES) characterization is carried out at the CASSCF and MRSDCI levels, followed by ab initio dynamics simulation of excited-state intramolecular proton transfer (ESIPT) on the S2(pipi*) state in malonaldehyde. The proton-transfer transition state lies close to an S2/S1 conical intersection, leading to substantial coupling of proton transfer with electronic relaxation. Proton exchange proceeds freely on S2, but its duration is limited by competition with twisting out of the molecular plane. This rotamerization pathway leads to an intersection of the three lowest singlet states, providing the first detailed report of ab initio dynamics around a three-state intersection (3SI). There is a significant energy barrier to ESIPT on S1, and further pyramidalization of the twisted structure leads to the minimal energy S1/S0 intersection and energetic terminal point of excited-state dynamics. Kinetics and additional mechanistic details of these pathways are discussed. Significant depletion of the spectroscopic state and recovery of the ground state is seen within the first 250 fs after photoexcitation.  相似文献   

6.
The photochemical deuterium incorporation at the 2'- and 4'-positions of 2-phenylphenol (4) and equivalent positions of related compounds has been studied in D(2)O (CH(3)OD)-CH(3)CN solutions with varying D(2)O (CH(3)OD) content. Predominant exchange was observed at the 2'-position with an efficiency that is independent of D(2)O (MeOD) content. Exchange at the 2'-position (but not at the 4'-position) was also observed when crystalline samples of 4-OD were irradiated. Data are presented consistent with a mechanism of exchange that involves excited-state intramolecular proton transfer (ESIPT) from the phenol to the 2'-carbon position of the benzene ring not containing the phenol, to generate the corresponding keto tautomer (an o-quinone methide). This is the first explicit example of a new class of ESIPT in which an acidic phenolic proton is transferred to an sp(2)-hybridized carbon of an aromatic ring. The complete lack of exchange observed for related substrates 6-9 and for planar 4-hydroxyfluorene (10) is consistent with a mechanism of ESIPT that requires an initial hydrogen bonding interaction between the phenol proton and the benzene pi-system. Similar exchange was observed for 2,2'-biphenol (5), suggesting that this new type of ESIPT is a general reaction for unconstrained 2'-aryl-substituted phenols and other related hydroxyarenes.  相似文献   

7.
We have investigated the nonradiative deactivation process of malachite green in the singlet excited states, S(1) and S(2), by high-level ab initio quantum chemical calculations using the CASPT2//CASCF approach. The deactivation pathways connecting the Franck-Condon region and conical intersection regions are identified. The initial population in the S(1) state is on a flat surface and the relaxation involves a rotation of phenyl rings, which leads the molecule to reach the conical intersection between the S(1) and S(0) states, where it efficiently decays back to the ground state. There exists a small barrier connecting the Franck-Condon and conical intersection regions on the S(1) potential energy surface. The decay mechanism from the S(2) state also involves the twisting motion of phenyl rings. In contrast to the excitation to the S(1) state, the initial population is on a downhill ramp potential and the barrierless relaxation through the rotation of substituted phenyl rings is expected. During the course of relaxation, the molecule switches to the S(1) state at the conical intersection between S(2) and S(1), and then it decays back to the ground state through the intersection between S(1) and S(0). In relaxation from both S(1) and S(2), large distortion of phenyl rings is required for the ultrafast nonradiative decay to the ground state.  相似文献   

8.
Excited‐state intramolecular proton transfer (ESIPT) of four imidazole derivatives, 2‐(2′‐hydroxyphenyl)imidazole (HPI), 2‐(2′‐hydroxyphenyl)benzimidazole (HPBI), 2‐(2′‐hydroxyphenyl)‐1H‐phenanthro[9,10‐d]imidazole (HPPI) and 2‐(2′‐hydroxyphenyl)‐1‐phenyl‐1H‐phenanthro[9,10‐d]imidazole (HPPPI), were studied by the sophisticated CASSCF/CASPT2 methodology. The state‐averaged SA‐CASSCF method was used to optimize their geometry structures of S0 and S1 electronic states, and the CASPT2 calculations were used for the calibration of all the single‐point energies, including the absorption and emission spectra. A reasonable agreement is found between the theoretical predictions and the available experimental spectral data. The forward ESIPT barriers of four target compounds gradually decrease with the increase of molecular size. On the basis of the present calculations, it is a plausible speculation that the larger the size, the faster is the ESIPT rate, and eventually, HPPPI molecule can undergo a completely barrierless ESIPT to the more stable S1 keto form. Additionally, taking HPI as a representative example, the radiationless decays connecting the S0 and S1/S0 conical intersection structures were also studied by constructing a linearly interpolated internal coordinate (LIIC) reaction path. The qualitative analysis shows that the LIIC barrier of HPI in the keto form is remarkably lower than that of its enol‐form, indicating that the former has a big advantage over the latter in the nonradiative process. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Four new 9-(2'-hydroxyphenyl)anthracene derivatives 7-10 were synthesized and their potential excited state intramolecular proton transfer (ESIPT) reaction investigated. Whereas 7 reacted via the anticipated (formal) ESIPT reaction (proton transfer to the 10-position of the anthracene), derivatives 8-10 reacted via ESIPT to both 9- and 10-positions, giving rise to two types of intermediates, quinone methides (e.g., 29) and zwitterions (e.g., 30). These intermediates are trapped by solvent (water or methanol) giving addition products that can readily revert back to starting material. However, on extended photolysis, the products that are isolated can best be rationalized as being due to competing elimination and intramolecular cyclization of zwitterions 30 and 37. These results show that it is possible to structurally tune ESIPT in (hydroxyphenyl)anthracenes to either result in a completely reversible reaction or give isolable anthracene addition or rearrangement products.  相似文献   

10.
A theoretical CASSCF study of the reaction path for excited-state intramolecular proton transfer (ESIPT) for a model system derived from the UV absorber 2-(2'-hydroxyphenyl) benzotriazole without the fused benzo ring on the triazole has been carried out. A planar reaction path can be optimized but is shown to have no physical significance. The true reaction path involves twisted geometries. Adiabatic proton transfer is triggered by a charge-transfer from the phenol to the triazole group, and is followed by radiationless decay at the keto form. Along the nonplanar reaction path, there is a coupled proton and electron transfer in a manner similar to tryptophan. This rationalizes unexpected experimental results on the effect of electron withdrawing substituent groups on the photostability. The coupled proton and electron transfer is followed by a barrierless relaxation in the ground state to recover the enol form. An alternative photostabilization pathway from a phenyl localized state has also been documented and is similar to the channel 3 decay pathway in benzene photochemistry. Additionally, a long-lived intermediate for a twisted intramolecular charge-transfer (TICT) state has been identified as the species potentially responsible for the increase of blue fluorescence in strongly polar media.  相似文献   

11.
This work reports results of further studies on a new class of excited state intramolecular proton transfer (ESIPT), from phenol OH to adjacent aromatic carbon atoms of suitably designed biphenyl systems. For this purpose, a number of 2-phenylphenols 36 with methyl and methoxy substituents on the adjacent proton accepting phenyl ring were synthesized. In particular, we were also interested in studying the effect of an acetyl (ketone) substituent on the proton accepting ring (biphenyl 7) and the effect on the photochemistry when the ketone is reduced to alcohol (biphenyl 8). All compounds except for 7 were found to undergo deuterium exchange (Фex = 0.019–0.079) primarily at the 2′-position on photolysis in 1:3 D2O–CH3CN. This is consistent with a reaction mechanism involving initial ESIPT from the phenol OH to the 2′-position of the adjacent phenyl ring, to generate a biphenyl quinone methide intermediate which rapidly tautomerizes back to starting material. Biphenyl 8 also undergoes a competing photosolvolysis reaction (overall loss of water). Both photosolvolysis and ESIPT reactions react via isomeric quinone methide intermediates and are best interpreted as arising from an excited singlet state that possesses a large degree of charge transfer character, from the phenol ring to the attached phenyl ring. The failure of 7 to react may be due to two possible reasons: (i) high intersystem crossing rate to a non-polarized triplet excited state and/or (ii) a polarized singlet state that is now much more basic at the carbonyl oxygen. The results are consistent with qualitative examination of calculated HOMOs and LUMOs (AM1).  相似文献   

12.
Potential energy surfaces (PES) for the ground and excited state intramolecular proton transfer (ESIPT) processes in 5-hydroxy-flavone (5HF) were studied using DFT-B3LYP/6-31G(d) and TD-DFT/6-31G(d) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer (GSIPT) in 5HF. Excited states PES calculations support the existence of ESIPT process in 5HF. ESIPT in 5HF has been explained in terms of HOMO, LUMO electron density of the enol and keto tautomer of 5HF. PES scan by phenyl group rotation suggests that the twisted form, i.e., phenyl group rotated by 18.7° out of benzo-γ-pyrone ring plane is the most stable conformer of 5HF.  相似文献   

13.
The photophysics of indigo as well as of bispyrroleindigo, the basic chromophore of indigo, has been investigated with ab initio electronic-structure calculations. Vertical electronic excitation energies and excited-state potential-energy profiles have been calculated with the CASSCF, CASPT2 and CC2 methods. The calculations reveal that indigo and bispyrroleindigo undergo intramolecular single-proton transfer between adjacent N-H and C=O groups in the (1)ππ* excited state. The nearly barrierless proton transfer provides the pathway for a very efficient deactivation of the (1)ππ* state via a conical intersection with the ground state. While a low-lying S(1)-S(0) conical intersection exists also after double-proton transfer, the latter reaction path exhibits a much higher barrier. The reaction path for trans→cis photoisomerization via the twisting of the central C=C bond has been investigated for bispyrroleindigo. It has been found that the twisting of the central C=C bond is unlikely to play a role in the photochemistry of indigo, because of a large potential-energy barrier and a rather high energy of the S(1)-S(0) conical intersection of the twisted structure. These findings indicate that the exceptional photostability of indigo is the result of rapid internal conversion via intramolecular single-proton transfer, combined with the absence of a low-barrier reaction path for the generation of the cis isomer via trans→cis photoisomerization.  相似文献   

14.
The role of electron and proton transfer processes in the photophysics of hydrogen-bonded molecular systems has been investigated with ab initio electronic-structure calculations. We discuss generic mechanisms of the photophysics of a hydrogen-bonded aromatic pair (pyrrole–pyridine), as well as an intra-molecularly hydrogen-bonded π system composed of the same molecular sub-units (2(2′-pyridyl)pyrrole). The reaction mechanisms are discussed in terms of excited-state minimum-energy paths, conical intersections and the properties of frontier orbitals. A common feature of the photochemistry of these systems is the electron-driven proton transfer (EDPT) mechanism. In the hydrogen-bonded complex, a highly polar charge transfer state of 1ππ* character drives the proton transfer, which leads to a conical intersection of the S1 and S0 surfaces and thus ultrafast internal conversion. In 2(2′-pyridyl)pyrrole, out-of-plane torsion is additionally needed for barrierless access to the S1–S0 conical intersection. It is pointed out that the EDPT process plays an essential role in the fluorescence quenching in hydrogen-bonded aromatic complexes, the function of organic photostabilizers, and the photostability of biological molecules.  相似文献   

15.
We present a detailed CASSCF study of the mechanism of excited-state intramolecular proton transfer (ESIPT) in the o-hydroxyphenyl triazine class of photostabilizers. The valence-bond analysis of the ground state and the two pipi* excited states permits a simple chemical interpretation of the mechanistic information. Our results show that the barrier to enol-keto tautomerism on the ground-state adiabatic surface is high. Following photoexcitation to the charge-transfer state, the ESIPT is predicted to take place without a barrier. Radiationless decay to the ground state is associated with an extended seam of conical intersection, with a sloped topology lying parallel to the ESIPT path, which can be accessed at any point along the reaction path. Our results show that the triazine class of photostabilizers has the photochemical and photophysical qualities associated with exceptional photostability.  相似文献   

16.
A novel class of 2-(2'-hydroxyphenyl)benzothiazole-based (HBT-based) excited-state intramolecular proton-transfer (ESIPT) compounds, N,N'-di[3-Hydroxy-4-(2'-benzothiazole)phenyl]isophthalic amide (DHIA) and N,N'-di[3-Hydroxy-4-(2'-benzothiazole)phenyl]5-tert-butyl-isophthalic amide (DHBIA) has been feasibly synthesized and the properties of their nanoparticles in THF/H2O mixed solvent were investigated. Both compounds were found to exhibit aggregation-induced emission enhancement (AIEE) due to restricted intramolecular motion and easier intramolecular proton transfer in solid state. On identical experimental conditions, the emission of DHBIA aggregates increased more remarkably than that of DHIA. Different aggregation forms of these two organic compounds, due to the steric hindrance of a single tert-butyl group, could be responsible for the notably different degrees of the fluorescence enhancement. Their aggregation modes were investigated on the basis of time-dependent absorption, scanning electron microscope (SEM) images, and molecular modeling with theoretical calculation. The photophysical dynamics were also depicted based on the extremely fast ESIPT four-level cycle.  相似文献   

17.
Herein we have employed high-level multi-reference CASSCF and MS-CASPT2 electronic structure methods to systematically study the photochemical mechanism of intramolecularly hydrogen-bonded 2-(2'-hydroxyphenyl)-4-methyloxazole. At the CASSCF level, we have optimized minima, conical intersections, minimum-energy reaction paths relevant to the excited-state intramolecular proton transfer (ESIPT), rotation, photoisomerization, and the excited-state deactivation pathways. The energies of all structures and paths are refined by the MS-CASPT2 method. On the basis of the present results, we found that the ESIPT process in a conformer with the OH…N hydrogen bond is essentially barrierless process; whereas, the ESIPT process is inhibited in the other conformer with the OH…O hydrogen bond. The central single-bond rotation of the S1 enol species is energetically unfavorable due to a large barrier. In addition, the excited-state deactivation of the S1 keto species, as a result of the ultrafast ESIPT, is very efficient because of the existence of two easily-approached keto S1/S0 conical intersections. In stark contrast to the S1 keto species, the decay of the S1 enol species is almostly blocked. The present theoretical study contributes valuable knowledge to the understanding of photochemistry of similar intramolecularly hydrogen-bonded molecular and biological systems.  相似文献   

18.
在四-(邻氯苯基)卟吩及其金属络合物中,苯环上一个邻位质子被氯原子取代,导致其余苯环质子和全部苯环碳原子成为磁不等性核,从而出现比未取代的四苯基卟吩及其金属络合物为多的化学位移。对于In(OClTPP)Cl,NMR时标上缓慢的轴向配位体交换和苯环相对于卟啉平面的缓慢旋转,导致苯环两侧的不等性;因此,苯环邻位和间位的质子和碳原子各呈现两个不同的化学位移值。本工作测量和归属了H_2(OClTPP)及其诈、镉、镍、铟络合物的质子谱和~(13)C谱,使用偏共振实验以辅助谱的归属。  相似文献   

19.
Excited-state reaction paths and the corresponding energy profiles of 2-(2'-hydroxyphenyl)benzotriazole (TIN-H) have been determined with the CC2 (simplified singles-and-doubles coupled-cluster) ab initio method. Hydrogen transfer along the intramolecular hydrogen bond, torsion of the aromatic rings and pyramidization of the central nitrogen atom are identified as the most relevant photochemical reaction coordinates. The keto-type planar S(1) state reached by barrierless intramolecular hydrogen transfer is found to be unstable with respect to torsion. The latter mode, together with a moderate pyramidization of the central nitrogen atom, provides barrierless access to a S(1)-S(0) conical intersection. Only the pi-type orbitals of the aromatic rings are involved in the open-shell structures. The S(1)-S(0) conical intersection, which occurs for perpendicular geometry of the aromatic rings, is a pure biradical. From the conical intersection, a barrierless reaction path steers the system back to the enol-type minimum of the S(0) potential-energy surface, thus closing the photocycle. This photophysical pathway accounts for the remarkable photostability of the molecule.  相似文献   

20.
The photophysics of flavins is highly dependent on their environment. For example, 4a‐hydroxy flavins display weak fluorescence in solution, but exhibit strong fluorescence when bound to a protein. To understand this behavior, we performed temperature‐dependent fluorescent studies on an N(5)‐alkylated 4a‐hydroxy flavin: the putative bacterial luciferase fluorophore. We find an increase in fluorescence quantum yield upon reaching the glass transition temperature of the solvent. We then employ multiconfigurational quantum chemical methods to map the excited‐state deactivation path of the system. The result reveals a shallow but barrierless excited state deactivation path that leads to a conical intersection displaying an orthogonal out‐of‐plane distortion of the terminal pyrimidine ring. The intersection structure readily explains the observed spectroscopic behavior in terms of an excited‐state barrier imposed by the rigid glass cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号