首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the influence of hydrogen bonding on the fundamental and overtone bands of the OH-stretching vibration of each OH group in the intramolecularly hydrogen-bonded OH(I)::OH(II) pair in 1,2-, 1,3- and 1,4-diols. The hydrogen bonding between the two OH groups significantly increases in strength from the five-membered ring of a 1,2-diol to the seven-membered ring of a 1,4-diol. Although the hydrogen bonding does not affect the vibrational property of the OH(II) (or acceptor), it significantly influences the OH(I) (or donor). As the hydrogen bonding becomes stronger from a 1,2- to a 1,4-diol, the fundamental band of the OH-stretching shifts downwards by from about 50 to 140 cm(-1), and the overtone band markedly decreases in intensity, although the effect on the intensity and bandwidth of the fundamental band varies among 1,2-, 1,3- and 1,4-diols. The quantum-mechanically calculated normal frequencies of the acceptor and donor OH groups in the hydrogen-bonded ring are in good agreement with the observed frequencies. The calculated interatomic distance between the O of an acceptor OH and the H of a donor OH is the shortest for a 1,4-diol, which is consistent with the largest frequency shift caused by the hydrogen bonding.  相似文献   

2.
[AlO4Al12(OH)24(H2O)12] + (Al13) formation in electrolysis process is studied. The results detected by27Al NMR spectroscopy show that high content of Al13 polymer is formed in the partially hydrolyzed aluminum solution prepared by controlled electrolysis process. In the produced electrolyte of total Al concentration ([AlT]) 2.0 mol · L-1 with a basicity (B = OH/Al molar ratios) of 2.0, the content of Al13 polymer is over 60% of total Al. Dynamic light scattering shows that the size distribution of the final electrolyte solutions ([AlT] = 2.0 mol · L-1) is trimodal with B = 2.0 and bimodal with B = 2.5. The aggregates of Al13 complexes increase the particle size of partially hydrolyzed aluminum solution.  相似文献   

3.
Infrared photodissociation spectra of Al(+)(CH(3)OH)(n) (n = 1-4) and Al(+)(CH(3)OH)(n)-Ar (n = 1-3) were measured in the OH stretching region, 3000-3800 cm(-1). For n = 1 and 2, sharp absorption bands were observed in the free OH stretching region, all of which were well reproduced by the spectra calculated for the solvated-type geometry with no hydrogen bond. For n = 3 and 4, there were broad vibrational bands in the energy region of hydrogen-bonded OH stretching vibrations, 3000-3500 cm(-1). Energies of possible isomers for the Al(+)(CH(3)OH)(3),4 ions with hydrogen bonds were calculated in order to assign these bands. It was found that the third and fourth methanol molecules form hydrogen bonds with methanol molecules in the first solvation shell, rather than a direct bonding with the Al(+) ion. For the Al(+)(CH(3)OH)(n) clusters with n = 1-4, we obtained no evidence of the insertion reaction, which occurs in Al(+)(H(2)O)(n). One possible explanation of the difference between these two systems is that the potential energy barriers between the solvated and inserted isomers in the Al(+)(CH(3)OH)(n) system is too high to form the inserted-type isomers.  相似文献   

4.
多金属氧酸盐(Polyoxometalates POMs)化学已成为材料科学、医学、催化及光化学等诸多领域的活跃研究课题[1~5]。  相似文献   

5.
Cellulose - Differently structured aluminum (tri/mono) hydroxide (Al(OH)3 /AlO(OH)) nanoparticles were prepared and used as thermal-management additives to microfibrillated cellulose (MFC),...  相似文献   

6.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   

7.
Sun Z  Wang H  Feng H  Zhang Y  Du S 《Inorganic chemistry》2011,50(19):9238-9242
A vertex-shared tetrahedral [Al(4)(OH)(6)(H(2)O)(12)](6+) (Al(4)) and a disordered [Al(H(2)O)(6)](3+) (Al(1)) that coexist in a 1:2 ratio within each unit cell were observed in the structure of [Al(4)(OH)(6)(H(2)O)(12)][Al(H(2)O)(6)](2)Br(12), which crystallized in a cubic Fd3m space group from a spontaneously hydrolyzed solution of AlBr(3). The former is composed of four AlO(6) octahedra that are connected to each other by sharing three vertexes of each octahedron and form a large regular tetrahedron with ideal T(d) symmetry. The central Al(3+) ion of the latter is coordinated by 6 disordered OH(2) molecules, that form a core-shell structure with ideal D(3d) symmetry.  相似文献   

8.
The Raman spectrum of atelestite Bi2O(OH)(AsO4), a hydroxy-arsenate mineral containing bismuth, has been studied in terms of spectra-structure relations. The studied spectrum is compared with the Raman spectrum of atelestite downloaded from the RRUFF database. The sharp intense band at 834 cm(-1) is assigned to the ν1 AsO4(3-) (A1) symmetric stretching mode and the three bands at 767, 782 and 802 cm(-1) to the ν3 AsO4(3-) antisymmetric stretching modes. The bands at 310, 324, 353, 370, 395, 450, 480 and 623 cm(-1) are assigned to the corresponding ν4 and ν2 bending modes and BiOBi (vibration of bridging oxygen) and BiO (vibration of non-bridging oxygen) stretching vibrations. Lattice modes are observed at 172, 199 and 218 cm(-1). A broad low intensity band at 3095 cm(-1) is attributed to the hydrogen bonded OH units in the atelestite structure. A weak band at 1082 cm(-1) is assigned to δ(BiOH) vibration.  相似文献   

9.
Infrared multiple photon dissociation spectra for the chloride ion solvated by either water, methanol or ethanol have been recorded using an FTICR spectrometer coupled to a free-electron laser, and are presented here along with assignments to the observed bands. The assignments made to the Cl(-)/H(2)O, Cl(-)(CH(3)OH), and Cl(-)(CH(3)CH(2)OH) spectra are based on comparison with the neutral H(2)O, CH(3)OH, and CH(3)CH(2)OH spectra, respectively. This work confirms that a band observed around 1400 cm(-1) in the Cl(-)(H(2)O) spectrum is not due to the Ar tag in Ar predissociation spectra. The carrier of this band is, most likely, the first overtone of the OHCl bend. Based on the position of the overtone in the IRMPD spectrum, 1375 cm(-1), the fundamental must occur very close to 700 cm(-1) and observation of this band should aid theoretical treatments of the spectrum of this complex. B3LYP/6-311++G(2df,2pd) calculations are shown to reproduce the IRMPD spectra of all three solvated chloride species. They also predict that attaching one or two Ar atoms to the Cl(-)(H(2)O) complex results in a shift of no more than a few wavenumbers in the fundamental bands for the bare complex, in agreement with previous experiment. For both alcohol-Cl(-) complexes, the S(N)2 "backside attack" isomers are not observed and Cl(-) is predicted theoretically, and confirmed experimentally, to be bound to the hydroxyl hydrogen. For Cl(-)(CH(3)CH(2)OH), the trans and gauche conformers are similar in energy, with the gauche conformer predicted to be thermodynamically favoured. The experimental infrared spectrum agrees well with that predicted for the gauche conformer but a mixture of gauche and anti conformers cannot be ruled out based on the experimental spectra nor on the computed thermochemistry.  相似文献   

10.
The structural changes of synthetic and natural beidellites during dehydroxylation have been studied using infrared emission spectroscopy of the OH-stretching and bending regions. The OH-stretching region is characterized by two OH-stretching modes around 3600-3615 cm-1 and around 3650 cm-1. These bands strongly decrease in intensity upon dehydroxylation up to 600 degrees C for the natural beidellite and 700-750 degrees C for the synthetic ones. The differences in bandwidth, intensity, and dehydroxylation behavior are interpreted as due to differences in crystallinity with crystallinity increasing in the order natural beidellite < synthetic beidellite BSK3 < synthetic beidellite E498. Above 400 degrees C a new band attributed to silanol groups becomes visible in all samples due to transfer of the hydroxyls from the octahedral layer to the siloxane layer before they are lost. The broad band around 3300-3400 cm-1 is assigned to both H-bonding in H2O and H-bonding to Si-O-Al linkages. The presence of two different OH groups is also reflected in the OH-bending modes around 875-895 cm-1 and 915-925 cm-1 and in the OH-libration modes around 780 and 800-820 cm-1. These bands show a decrease in intensity upon heating and dehydroxylation of the clay structure. Here again the same order can be observed for the disappearance of the bands as for the OH-stretching region. Copyright 1999 Academic Press.  相似文献   

11.
The vibrational spectroscopy of the electronically closed-shell (Al 2O 3) n (AlO) (+) cations with n = 1-4 is studied in the 530-1200 cm (-1) range by infrared predissociation spectroscopy of the corresponding ion-He atom complexes in combination with quantum chemical calculations. In all cases we find, assisted by a genetic algorithm, global minimum structures that differ considerably from those derived from known modifications of bulk alumina. The n = 1 and n = 4 clusters exhibit an exceptionally stable conical structure of C 3 v symmetry, whereas for n = 2 and n = 3, multiple isomers of lower symmetry and similar energy may contribute to the recorded spectra. A blue shift of the highest energy absorption band is observed with increasing cluster size and attributed to a shortening of Al-O bonds in the larger clusters. This intense band is assigned to vibrational modes localized on the rim of the conical structures for n = 1 and n = 4 and may aid in identifying similar, highly symmetric structures in larger ions.  相似文献   

12.
The second OH overtone transition of the trans-perp conformer of peroxynitrous acid (tp-HOONO) is identified using infrared action spectroscopy. HOONO is produced by the recombination of photolytically generated OH and NO(2) radicals, and then cooled in a pulsed supersonic expansion. The second overtone transition is assigned to tp-HOONO based on its vibrational frequency (10 195.3 cm(-1)) and rotational band contour, which are in accord with theoretical predictions and previous observations of the first overtone transition. The transition dipole moment associated with the overtone transition is rotated considerably from the OH bond axis, as evident from its hybrid band composition, indicating substantial charge redistribution upon OH stretch excitation. The overtone band exhibits homogeneous line broadening that is attributed to intramolecular vibrational redistribution, arising from the coupling of the initially excited OH stretch to other modes that ultimately lead to dissociation. The quantum state distributions of the OH X (2)Pi (nu=0) products following first and second OH overtone excitation of tp-HOONO are found to be statistical by comparison with three commonly used statistical models. The product state distributions are principally determined by the tp-HOONO binding energy of 16.2(1) kcal mol(-1). Only a small fraction of the OH products are produced in nu=1 following the second overtone excitation, consistent with statistical predictions.  相似文献   

13.
Spectra of jet-cooled methanol in the overtone and combination region from 5000 to 14 000 cm(-1) have been obtained by means of infrared laser-assisted photofragment spectroscopy. Many of the observed features are assigned to combination bands of the type nnu(1)+nu(6), nnu(1)+nu(8), and nnu(1)+nu(6)+nu(8) (n=1,2,3), where nu(1) is the OH stretch, nu(6) is the OH bend, and nu(8) is the CO stretch. These bands show sharp torsion-rotation structure with features as narrow as 0.1 cm(-1). We also observe CH stretch overtones that are weaker than the OH containing combination bands and lack distinct torsion-rotation structure above v(CH)=2. The extent of observed structure on these bands allows us to place limits on the intramolecular vibrational energy redistribution decay rates in the upper vibrational states. We report a global fit of the observed band centers to a simple expression involving low-order anharmonicity constants.  相似文献   

14.
We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol clusters, (CH(3)OH)(n) with n = 2-6, in a pulsed supersonic jet by using the IR-VUV (vacuum-ultraviolet) ionization technique. VUV emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser emission served as a source of predissociation or excitation before ionization. The variations of intensity of protonated methanol cluster ions (CH(3)OH)(n)H(+) and CH(3)OH(+) and (CH(3)OH)(2)(+) were monitored as the IR laser light was tuned across the range 2650-3750 cm(-1). Careful processing of these action spectra based on photoionization efficiencies and the production and loss of each cluster due to photodissociation yielded IR spectra of the size-selected clusters. Spectra of methanol clusters in the OH region have been extensively investigated; our results are consistent with previous reports, except that the band near 3675 cm(-1) is identified as being associated with the proton acceptor of (CH(3)OH)(2). Spectra in the CH region are new. In the region 2800-3050 cm(-1), bands near 2845, 2956, and 3007 cm(-1) for CH(3)OH split into 2823, 2849, 2934, 2955, 2984, and 3006 cm(-1) for (CH(3)OH)(2) that correspond to proton donor and proton acceptor, indicating that the methanol dimer has a preferred open-chain structure. In contrast, for (CH(3)OH)(3), the splitting diminishes and the bands near 2837, 2954, and 2987 cm(-1) become narrower, indicating a preferred cyclic structure. Anharmonic vibrational wavenumbers predicted for the methanol open-chain dimer and the cyclic trimer with the B3LYP∕VPT2∕ANO1 level of theory are consistent with experimental results. For the tetramer and pentamer, the spectral pattern similar to that of the trimer but with greater widths was observed, indicating that the most stable structures are also cyclic.  相似文献   

15.
The integrated intensity change by H-bonds are measured for CH3OH solved in different solvents of fundamental, 1. and 2. overtone OH stretching bands. A function A=f(ν) for the strong intensity change by H-bonds of the fundamental band is given, it shows a kink between pure van der Waals solvents and H-bond acceptors. - The contrary behavior of fundamental and 1. overtone bands for the T-dependence of pure CH3OH and its LiClO4-solutions could be canceled if the fundamental spectra are intensity corrected by A=f(ν). It is shown that the discussions between species and continuum models of water could become unique taking into account the function f(ν) and its kink, different for fundamental and overtone bands.  相似文献   

16.
Infrared spectroscopy has been used to characterise synthesised hydrotalcites of formula Mg(x)Zn(6 - x)Cr2(OH)16(CO3) x 4H2O and Ni(x)Co(6 - x)Cr2(OH)16(CO3) x 4H2O. The infrared spectra are conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. Three carbonate antisymmetric stretching vibrations are observed at around 1358, 1387 and 1482 cm(-1). The 1482 cm(-1) band is attributed to the CO stretching band of carbonate hydrogen bonded to water. Variation of the intensity ratio of the 1358 and 1387 cm(-1) modes is linear and cation dependent. By using the water bending band profile at 1630 cm(-1) four types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface (c) coordinated water and (d) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite interlayer as it is hydrogen bonded to both the carbonate anion, adjacent water molecules and the hydroxyl surface.  相似文献   

17.
The infrared photodissociation spectra of [(CO 2) n (CH 3OH) m ] (-) ( n = 1-4, m = 1, 2) are measured in the 2700-3700 cm (-1) range. The observed spectra consist of an intense broad band characteristic of hydrogen-bonded OH stretching vibrations at approximately 3300 cm (-1) and congested vibrational bands around 2900 cm (-1). No photofragment signal is observed for [(CO 2) 1,2(CH 3OH) 1] (-) in the spectral range studied. Ab initio calculations are performed at the MP2/6-311++G** level to obtain structural information such as optimized structures, stabilization energies, and vibrational frequencies of [(CO 2) n (CH 3OH) m ] (-). Comparison between the experimental and the theoretical results reveals the structural properties of [(CO 2) n (CH 3OH) m ] (-): (1) the incorporated CH 3OH interacts directly with either CO 2 (-) or C 2O 4 (-) core by forming an O-HO linkage; (2) the introduction of CH 3OH promotes charge localization in the clusters via the hydrogen-bond formation, resulting in the predominance of CO 2 (-).(CH 3OH) m (CO 2) n-1 isomeric forms over C 2O 4 (-).(CH 3OH) m (CO 2) n-2 ; (3) the hydroxyl group of CH 3OH provides an additional solvation cite for neutral CO 2 molecules.  相似文献   

18.
Sixteen intermolecular vibrational levels of the S(0) state of the fluorobenzene-Ar van der Waals complex have been observed using dispersed fluorescence. The levels range up to ~130 cm(-1) in vibrational energy. The vibrational energies have been modelled using a complete set of harmonic and quartic anharmonic constants and a cubic anharmonic coupling between the stretch and long axis bend overtone that becomes near ubiquitous at higher energies. The constants predict the observed band positions with a root mean square deviation of 0.04 cm(-1). The set of vibrational levels predicted by the constants, which includes unobserved bands, has been compared with the predictions of ab initio calculations, which include all vibrational levels up to 70-75 cm(-1). There are small differences in energy, particularly above 60 cm(-1), however, the main differences are in the assignments and are largely due to the limitations of assigning the ab initio wavefunctions to a simple stretch, bend, or combination when the states are mixed by the cubic anharmonic coupling. The availability of these experimental data presents an opportunity to extend ab initio calculations to higher vibrational energies to provide an assessment of the accuracy of the calculated potential surface away from the minimum. The intermolecular modes of the fluorobenzene-Ar(2) trimer complex have also been investigated by dispersed fluorescence. The dominant structure is a pair of bands with a ~35 cm(-1) displacement from the origin band. Based on the set of vibrational modes calculated from the fluorobenzene-Ar frequencies, they are assigned to a Fermi resonance between the symmetric stretch and symmetric short axis bend overtone. The analysis of this resonance provides a measurement of the coupling strength between the stretch and short axis bend overtone in the dimer, an interaction that is not directly observed. The coupling matrix elements determined for the fluorobenzene-Ar stretch-long axis bend overtone and stretch-short axis bend overtone couplings are remarkably similar (3.8 cm(-1) cf. 3.2 cm(-1)). Several weak features seen in the fluorobenzene-Ar(2) spectrum have also been assigned.  相似文献   

19.
The modification of kaolinite surfaces through mechanochemical treatment has been studied using a combination of mid-IR and near-IR spectroscopy. Kaolinite hydroxyls were lost after 10 h of grinding as evidenced by the decrease in intensity of the OH stretching vibrations at 3695 and 3619 cm(-1) and the deformation modes at 937 and 915 cm(-1). Concomitantly an increase in the hydroxyl-stretching vibrations of water is observed. The mechanochemical activation (dry grinding) causes destruction in the crystal structure of kaolinite by the rupture of the O-H, Al-OH, Al-O-Si and Si-O bonds. Evidence of this destruction may be followed using near-IR spectroscopy. Two intense bands are observed in the spectral region of the first overtone of the hydroxyl-stretching vibration at 7065 and 7163 cm(-1). These two bands decrease in intensity with mechanochemical treatment and two new bands are observed at 6842 and 6978 cm(-1) assigned to the first overtone of the hydroxyl-stretching band of water. Concomitantly the water combination bands observed at 5238 and 5161 cm(-1) increase in intensity with mechanochemical treatment. The destruction of the kaolinite surface may be also followed by the loss of intensity of the two hydroxyl combination bands at 4526 and 4623 cm(-1). Infrared spectroscopy shows that the kaolinite surface has been modified by the removal of the kaolinite hydroxyls and their replacement with water adsorbed on the kaolinite surface. NIR spectroscopy enables the determination of the optimum time for grinding of the kaolinite. Further NIR allows the possibility of continual on-line analysis of the mechanochemical treatment of kaolinite.  相似文献   

20.
Synthetic malachite, hydrozincite and five monophasic mixed copper-zinc hydroxycarbonates have been studied by Fourier transform infrared (FTIR) spectroscopy at ambient and liquid nitrogen temperature in the region of 4000-400 cm(-1). The analysis of the spectra reveals that the samples containing up to 20% zinc retain the malachite lattice, thus forming solid solutions. The inclusion of zinc ions in malachite reflects on the positions and intensity of the bands corresponding to the internal modes of the carbonate ion, to the OH librations and to the Me-O interactions. For example, the higher and the lower frequency components of v3 shift to higher and lower frequencies, respectively. The intensity of the bands corresponding to v2 decreases with the zinc content increase. The spectrum of the sample Cu1.31Zn0.69(OH)2CO3 become diffuse and ill-resolved in the region of the Me-O interactions (region below 600 cm(-1)) and the corresponding bands are shifted to lower frequencies due to the weaker Zn-O interactions as compared with those of the copper ions. The internal modes of the carbonate ions in hydrozincite and aurichalcite are assigned and discussed taking into account the site symmetry and factor group symmetry. The OH and OD stretches (matrix-isolated HDO molecules) and the hydrogen bond strengths are interpreted in terms of Me-O interactions (synergetic effect), hydrogen bond angles and different hydrogen bond acceptor strengths of the oxygen atoms from the carbonate ions. It proves that the hydrogen bonds in hydrozincite are stronger as compared with those in malachite, irrespective of both the larger hydrogen bond lengths and the weaker Zn-O interactions in hydrozincite due to the higher hydrogen bond acceptor strength of the non-coordinated oxygen atom and the formation of bifurcated hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号