首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface of anatase TiO2 nanocrystals with an average size of ~20 nm was modified by PMMA through γ radiation. The modified nanocrystals were investigated with photoluminescence (PL) and Fourier transform infrared (FTIR) spectra. A stable blue luminescence peak (~420 nm) can be observed for the modified anatase TiO2 nanocrystal.  相似文献   

2.
The nanocrystal samples of titanium dioxide doped with europium ion (Eu3+/TiO2 nanocrystal) are synthesized by the sol-gel method with hydrothermal treatment. The Eu3+ contents (molar ratio) in the samples are 0, 0.5%, 1%, 2%, 3% and 4%. The X-ray diffraction, UV-Vis spectroscopy data and scanning electron microscope image show that crystallite size is reduced by the doping of Eu3+ into TiO2. Comparing the Raman spectra of TiO2 with Eu3+/TiO2 (molar ratio Eu3+/TiO2=1%, 2% and 4%) nanocrystals at different annealing temperatures indicates that the anatase-to-rutile phase transformation temperatures of Eu3+/TiO2 nanocrystals are higher than that of TiO2. This is due to the formation of Eu-O-Ti bonds on the surface of the TiO2 crystallite, as characterized by the X-ray photoelectron spectroscopy. The photoluminescence spectra of TiO2 in Eu3+/TiO2 nanocrystals are interpreted by the surface self-trapped and defect-trapped exciton relaxation. The photoluminescence of Eu3+ in Eu3+/TiO2 nanocrystals has the strongest emission intensity at 2% of Eu3+ concentration.  相似文献   

3.
Size-quantization effects (short-wavelength shift of the structure and broadening) in low-temperature absorption spectra of PbI2 and HgI2 nanocrystals embedded in porous sodium borosilicate glass matrix with pores ranging in size from 2 to 50 nm have been observed and studied. The nanocrystal size was evaluated in the strong quantization approximation. It is shown that the size does not depend on the pore diameter of the matrices used, but is determined by the concentration of the solution introduced into the pores. The absorption and luminescence spectra of the systems thus obtained are shown to evolve as the substance emerges from the pores out onto the surface. The dynamics of formation and the phase composition of the PbI2 and HgI2 crystals on the surface are studied. Fiz. Tverd. Tela (St. Petersburg) 39, 468–473 (March 1997)  相似文献   

4.
Polyurethane foams with various isocyanate/polyol ratios, reinforced with various amounts of nanosized TiO2, were prepared and their morphological properties were investigated. The nanoparticles were dispersed into the polyol component by stirring and then heating during ultrasonication to avoid particle agglomeration. Both scanning electron and transmission optical microscopes were used to evaluate the role of the nanosized TiO2 on the porous structure of the polyurethane foams. Cell size distributions were obtained by measuring the average cell diameters of the cells in the micrographs. To have a better assessment of nanoparticle effects on the foam morphology sample densities were measured using Archimedes law. For better understanding of microstructure evolution the heat release rate during the foaming process was characterized. The results showed that the values of cell size, cell density, apparent density and heat release rate depended on the ratio of isocyanate/polyol as well as TiO2 content.  相似文献   

5.
Titanium oxide (TiO2) nanocyrstals which are perfectly dispersed in organic solvents are synthesized by organic-ligand-assisted supercritical hydrothermal synthesis. The addition of hexaldehyde to the supercritical hydrothermal synthesis of TiO2 leads to the in-situ surface modification, which enables the synthsized TiO2 nanocrystals to be perfectly dispersed in iso-octane because of its hydrophobic nature. Further, the one-pot synthesis of hybrid materials results in the significant reduction of the particles size, probably due to the capping effect of hexaldehyde to suppress the particles growth.  相似文献   

6.
Y2O3:Eu3+ nanocrystals were prepared by combustion synthesis. The particle size estimated by X-ray powder diffraction (XRD) was about 10 nm. A blue-shift of the charge-transfer (CT) band in excitation spectra was observed in Y2O3:Eu3+ nanocrystals compared with bulk Y2O3:Eu3+. The electronic structure of Y2O3 is calculated by density functional method and exchange and correlation have been treated by the generalized gradient approximation (GGA) within the scheme due to Perdew-Burke-Ernzerhof (PBE). The calculated results show that the energy centroid of 5d orbital in nanocrystal has increasing trend compared with that in the bulk material. The bond length and bond covalency are calculated by chemical bond theory. The bond lengths of Y2O3:Eu3+ nanocrystal are shorter than those of the bulk counterpart and the bond covalency of Y2O3:Eu3+ nanocrystal also has an increasing trend. By combining centroid shift and crystal-field splitting, the blue-shift of the CT band is interpreted.  相似文献   

7.
A sol–gel route for TiO2 nanocrystals (NCs) synthesis has been developed at low temperature without surfactants. Synthetic and processing parameters have been optimized to maximize particles’ colloidal stability and crystallinity. The obtained TiO2 NCs can be homogeneously dispersed in a sol–gel derived organic–inorganic hybrid material, resulting in homogeneous composite films when prepared by spin coating. High refractive index films were obtained with high TiO2 NCs loading and good transparency. Furthermore, TiO2 colloidal solutions can be used for depositing porous crystalline films, whose structural evolution has been followed under different annealing treatments. Nanocrystals were characterized by UV–Vis absorption, TEM, FT-Raman, and XRD techniques, while nanocomposite and TiO2 films were analyzed by SEM, TEM, and spectroscopic ellipsometry.  相似文献   

8.
In situ measurements of the magnetic susceptibility of ordered and disordered titanium monoxides TiOy in the temperature range from 300 to 1200 K have revealed that it depends on the size of crystals, their stoichiometry, and long-range order parameters. Analysis of the data for both the ordered and disordered TiOy has demonstrated that the dependence of the Van Vleck paramagnetism on the nanocrystal size is inversely proportional due to the breaking of symmetry of the local environment of titanium and oxygen atoms near the surface of nanocrystals. It has been found that the Van Vleck contribution from the atomic vacancy disorder in monoxide nanocrystals of superstoichiometric composition, as well as in the crystalline stoichiometric monoxide, is proportional to the deviation of the degree of long-range order from the maximum value.  相似文献   

9.
In situ measurements of the magnetic susceptibility of titanium monoxide nanocrystals with superstoichiometric composition TiOy (y > 1) in the 300–1200 K temperature range showed that this value depends not only on the structural state of a sample, but also on the size of crystals. Analysis of data obtained for both ordered and disordered TiOy showed that the Van-Vleck paramagnetism is inversely proportional to the nanocrystal size because of breakage of the symmetry of local environment of the near-surface atoms of titanium and oxygen. The Van-Vleck paramagnetism contribution due to atomic-vacancy disorder in superstoichiometric titanium monoxide nanocrystals, as well as in the stoichiometric composition, is proportional to a deviation of the degree of long-range order from its maximum value.  相似文献   

10.
The nanocrystalline anatase TiO2, which was synthesized by a sol-hydrothermal process in advance, has successfully modified with cetyltrimethylammonium bromide (CTAB) in the acidic condition as well as in the basic condition. On the basis of the measurements of infrared spectrum and X-ray photoelectron spectroscopy of the resulting TiO2, together with the phase-transfer experiments, it is suggested that the modification mechanism in the acidic condition is closely related to Br. Interestingly, compared with un-modified TiO2, the modified TiO2 exhibits high photocatalytic activity for degrading Rhodamine B (RhB) solution, especially for that modified in the acid. The enhanced photocatalytic activity of modified TiO2 in the acid is attributed to the role that the Br can easily capture photo-induced holes and then form active Br, consequently effectively inducing photocatalytic oxidation reactions, based on the surface photovoltage responses of the resulting TiO2. After that, a one-pot sol-hydrothermal route at the temperature as low as 80 °C is developed to directly synthesize CTAB-modified nanocrystalline TiO2 with a little preferred growth along 〈0 0 1〉 direction, which can be easily dispersed in the organic system and possess good photocatalytic performance. This work provides a feasible strategy to further improve the photocatalytic performance of nanocrystalline anatase and to synthesize TiO2 nanocrystals with preferential growth.  相似文献   

11.
以氧化石墨和TiO2溶胶为前驱物,结合絮凝与水热技术制备了TiO2纳米晶/石墨烯复合物,表征了产物的结构、形貌、孔隙率、光谱吸收性质. 结果表明:TiO2纳米晶的存在一定程度上阻止了石墨烯片层的重组,TiO2纳米晶/石墨烯复合物较单纯TiO2材料具有更强的吸光性能、对亚甲基蓝分子更强的吸附性能以及更高的电荷分离效率. 在紫外光和太阳光下,TiO2纳米晶/石墨烯复合物对亚甲基蓝的光催化降解效率均高于P25和纯TiO2.  相似文献   

12.
In this paper, the structural and magnetic properties of Ni metal implanted TiO2 single crystals are discussed. Ni nanocrystals (NCs) have been formed in TiO2 after ion implantation. Their crystallite sizes increased with increasing post-annealing temperature. Metallic Ni nanocrystals inside the TiO2 matrix are stable up to an annealing temperature of 1073 K. The Ni NCs formed inside TiO2 make the major contribution to the measured ferromagnetism.  相似文献   

13.
Titanium silicide grows on silicon in a form of discontinuous layers, which is the most serious obstacle to the formation of high-quality epilayers for VLSI applications. At the same time, nanometric dimensions of the epitaxial silicide islands attract interest as quantum nanostructures. However, for this purpose, nanocrystals in a self-assembled array have to be defect-free, and exhibit high shape and size uniformity. In this work titanium silicide was grown on Si(1 1 1) substrates by reactive deposition epitaxy and by solid-phase epitaxy. Since the reaction and phase-formation kinetics depend on the growth method, accordingly different lattice matching and facet energies may result in different morphological shapes of the nanocrystals. Nanocrystals from reaction in a solid-state could be characterized as highly non-uniform in both shape and size, and their evolution due to post-deposition anneals increased that non-uniformity even further. Relaxation of epitaxial mismatch strain by misfit dislocations could be inferred from a gradual reduction of the nanocrystal vertical aspect ratio and development of flat top facets out of the initially sharp conical crests, in accord with generalized Wulf-Kaishew theorem. On the other hand, the silicide nanocrystals formed by reactive deposition exhibited high uniformity and thermal stability. Significant strain relaxation, as could be judged by the nanocrystal flattening, took place only at temperatures in excess of 650 °C, followed by progressive nanocrystal coalescence. It thus could be inferred, that better titanium silicide nanocrystal arrays (in the sense of uniformity and stability) are more easily obtained by reactive deposition epitaxy than by solid-phase epitaxy. While terminal, stable C54-TiSi2 phase, did eventually form in the epilayers in both methods, different evolution pathways were manifested by different respective morphologies and orientations even in this final state.  相似文献   

14.
The photocatalytic (PC) performance of titanium dioxide (TiO2) nanoparticles strongly depends on their specific surface, the presence of crystal defects, their crystal phase, and the exposed crystal facets. In order to understand which of these factors contributes most significantly to the PC activity of TiO2 colloids, all of them have to be individually analyzed. This study entails the synthesis of five anatase nanocrystal samples. By maintaining the same reactant ratios as well as hydrothermal sol–gel synthesis route and only varying the autoclaving time or temperature, different crystallite sizes are obtained under comparable experimental conditions. A decrease in PC performance with increase in specific surface area is found. Such an unexpected counterintuitive result establishes the basis for a better understanding of the crucial factors that ultimately determine the PC activity. These are investigated by studying nanocrystals bulk and surface structure and morphology using a selection of complementary analysis methods (X‐ray photoelectron spectroscopy (XPS), X‐ray absorption fine structure (XAFS), X‐ray diffraction (XRD)…). It is found that a change in the nanocrystal morphology from an equilibrium state truncated tetragonal bipyramid to a more elongated rod‐like structure accompanied by an increase in oxygen vacancies is responsible for an augmented PC activity of the TiO2 nanocrystals.  相似文献   

15.
Poly-o-aminobenzoate (POA) was prepared by oxidizing o-aminobenzoic acid with (NH4)2S2O8 in an acidic solution. POA was adsorbed on TiO2 nanocrystal surface to obtain a POA-TiO2 nanocomposite. The polymerization reaction, structure, adsorption reaction on TiO2 surface, and visible light sensitization effect of the polymer adsorbed on TiO2 surface were studied by FT-IR and UV-visible spectra, cyclic voltammetry, and measurements of visible light photoelectrochemical and photocatalytic activities. Three kinds of POA with different long conjugate structures can be formed. These polymers have large absorbance in wide visible light region. POA molecules can be adsorbed on TiO2 surface by anchoring their carboxylate groups to the TiO2 surface with a multi-bridging chelating mode, which causes formation of the POA-TiO2 nanocomposite with a high stability. POA adsorbed on the TiO2 nanocrystal showed high visible light sensitization effect in the photocatalytic reaction.  相似文献   

16.
Raman spectra acquired from SnO2 nanocrystals with different sizes show a size-independent Raman mode at ∼574 cm−1. The intensity increases as the nanocrystal size decreases and this tendency is contrary to that of the normal bulk Raman modes. By considering the existence of oxygen vacancies at the nanocrystal surface, we adopt the density functional theory to calculate the Raman spectra with different oxygen vacancy positions and concentrations. The results clearly demonstrate that the in-plane oxygen vacancy is responsible for the 574 cm−1 mode and the intensity enhancement is a result of the higher in-plane oxygen vacancy concentration.  相似文献   

17.
Picosecond time‐resolved X‐ray diffraction has been used to study the nanoscale thermal transportation dynamics of bare gold nanocrystals and thiol‐based self‐assembled monolayer (SAM)‐coated integrated gold nanocrystals on a SiO2 glass substrate. A temporal lattice expansion of 0.30–0.33% was observed in the bare and SAM‐coated nanocrystals on the glass substrate; the thermal energy inside the gold nanocrystals was transported to the contacted substrate through the gold–SiO2 interface. The interfacial thermal conductivity between the single‐layered gold nanocrystal film and the SiO2 substrate is estimated to be 45 MW m?2 K?1 from the decay of the Au 111 peak shift, which was linearly dependent on the transient temperature. For the SAM‐coated gold nanocrystals, the thermal dissipation was faster than that of the bare gold nanocrystal film. The thermal flow from the nanocrystals to the SAM‐coated molecules promotes heat dissipation from the laser‐heated SAM‐coated gold nanocrystals. The thermal transportation of the laser‐heated SAM‐coated gold nanocrystal film was analyzed using the bidirectional thermal dissipation model.  相似文献   

18.
Nanocrystalline CoFe2O4 ferrite with crystallite sizes of 30 nm have been successfully prepared by an emulsion method. X-ray diffractometer (XRD) shows that nanocrystalline CoFe2O4 ferrite possesses face center cubic structure. Crystal structure of the CoFe2O4 nanocrystals will not be changed by the applied magnetic field and pressures. The obtained CoFe2O4 nanocrystalline powders were pressed into thin columns with different pressures. Meanwhile, the dependences of the applied pressures and the direction of applied magnetic field on the magnetic properties of the CoFe2O4 nanocrystals were investigated in detail using vibrating sample magnetometer (VSM). The pressed CoFe2O4 nanocrystal gains the most excellent magnetisms in a parallel applied magnetic field.  相似文献   

19.
Photoluminescence in anatase titanium dioxide nanocrystals   总被引:7,自引:0,他引:7  
Titanium dioxide (TiO2) nanocrystals were prepared by a hydrolysis process of tetrabutyl titanate. X-ray diffraction and Raman scattering showed that the as-prepared TiO2 nanocrystals have anatase structure of TiO2, and that the monophase anatase nanocrystals can be achieved through a series of annealing treatments below 650 °C. We measured photoluminescence (PL) spectra of the TiO2 nanocrystals. Under 2.41–2.71 eV laser irradiation, the TiO2 nanocrystals displayed strong visible light emission with maxima of 2.15–2.29 eV even at excitation power as low as 0.06 W/cm2. To identify the PL mechanism in the TiO2 nanocrystals, the dependences of the PL intensity on excitation power and irradiation time were investigated. The experimental results indicated that the radiative recombination is mediated by localized levels related to surface defects residing in TiO2 nanocrystallites. Received: 7 April 1999 / Revised version: 23 August 1999 / Published online: 30 November 1999  相似文献   

20.
Marta Gałyńska 《Molecular physics》2017,115(17-18):2209-2217
ABSTRACT

Quantum chemical calculations for two TiO2 nanoparticle cluster models (rutile–(TiO2)n with n = 20, and anatase–(TiO2)n with n = 92), selected to represent different nanoparticle size regimes, are used to elucidate structural influences on the electronic properties. Structural and electronic properties were obtained using a variety of computational methods and structure optimisation schemes, including a comparison of results for several different density functional theory functionals, as well as complementary Hartree–Fock and semi-empirical calculations. The results demonstrate a strong dependence of electronic properties, such as the optical band gap of importance for photoelectrochemical and photocatalytic applications, on the structure of the nanocrystal. From a methodological point of view, the calculations also provide useful information of broader significance about the viability of different computational schemes to efficiently obtain reliable computational results for intrinsically nanostructured materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号