首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rheological behavior of stable slurries is shown to be characterized by a bimodal model that represents a slurry as made up of a coarse fraction and a colloidal size fine fraction. According to the model, the two fractions behave independently of each other, and the non-Newtonian behavior of the viscosity is solely caused by the colloidal fraction, while the coarse fraction increases the viscosity level through hydrodynamic interactions. Data from experiments run with colloidal coal particles of about 2–3 µm average size dispersed in water show the viscosity of these colloidal suspensions to exhibit a highly shearrate-dependent behavior and, in the high shear limit, to match very closely the viscosity of suspensions of uniform size rigid spheres although the coal volume fraction must be determined semi-empirically. Different amounts of coarse coal particles are added to the colloidal suspension and the viscosity of the truly bimodal slurries measured as a function of shear rate. In agreement with the bimodal model, the measured shear viscosities show the coarse fraction to behave independently of the colloidal fraction and its contribution to the viscosity rise to be independent of the shear rate. It is shown that the shear rate exerted on the colloidal fraction is higher than that applied by the viscometer as a result of hydrodynamic interactions between the coarse particles, and that it is this effective higher shear rate which is necessary to apply in the correlations. For determining the coal volume fraction a relatively simple and quite accurate measurement technique is developed for determining the density and void fraction of coarse porous particles; the technique directly relates volume fraction to mass fraction.  相似文献   

2.
Filled polymeric liquids often exhibit apparent yielding and shear thinning in steady shear flow. Yielding results from non-hydrodynamic particle—particle interactions, while shear thinning results from the non-Newtonian behavior of the polymer melt. A simple equation, based on the linear superposition of two relaxation mechanisms, is proposed to describe the viscosity of filled polymer melts over a wide range of shear rates and filler volume fraction.The viscosity is written as the sum of two generalized Newtonian liquid models. The resulting equation can describe a wide range of shear-thinning viscosity curves, and a hierarchy of equations is obtained by simplifying the general case. Some of the parameters in the equation can be related to the properties of the unfilled liquid and the solid volume fraction. One adjustable parameter, a yield stress, is necessary to describe the viscosity at low rates where non-hydrodynamic particle—particle interaction dominate. At high shear rates, where particle—particle interactions are dominated by interparticle hydrodynamics, no adjustable parameters are necessary. A single equation describes both the high and low shear rate regimes. Predictions of the equation closely fit published viscosity data of filled polymer melts. n power-law index - n 1,n 2 power-law index of first (second) term - shear rate - steady shear viscosity - 0 zero-shear rate viscosity - 0, 1, 0, 2 zero-shear rate viscosity of first (second) term - time constant - 1, 2 time constant of first (second) term - µ r relative viscosity of filled Newtonian liquid - 0 yield stress - ø solid volume fraction - ø m maximum solid volume fraction  相似文献   

3.
An analysis of particle orientation in a dilute suspension of rodlike particles in a second-order fluid was performed to examine the effects of the elasticity of the fluid and of weak Brownian diffusion of the particle on its orientation. Distributions of particle orientation under a simple shear flow with rate of shearg have been obtained as a function of a single nondimensional parameter, * =/r e 2 (D/g), which combines the effects of the particle aspect ratior e , the weak fluid elasticity, and the weak Brownian rotation diffusion coefficientD of the particle. In the limit of larger e , when the fluid elasticity is strong enough to overcome the rotational diffusion effect on the particle motion, most of the particles will orient close to the vorticity axis. A new shear-thinning mechanism of the shear viscosity of such systems is predicted by the theory.  相似文献   

4.
The swelling of myofibrils extracted from white bovine muscle was followed by measuring their suspension rheology. Swelling of the myofibril with increasing pH and ionic strength was accompanied by an increase in both the steady shear viscosity of the suspension and the dynamic viscoelastic properties. Swelling was continuously monitored by measuringG while the ionic strength of the suspension was being changed by dialysis. The relationship between the degree of swelling and the rheological parameters is complicated because myofibrils are rodshaped and swell radially and therefore swelling results in a change in shape. To allow for this an attempt was made to generalize the data by plotting viscosity andG againstcS m , wherec is the protein concentration in the suspension,S is the swollen volume of the myofibrils per weight of protein, and ø m is the maximum packing fraction.The best fit to the data was represented by the equations sp = 1.05 (cS/ m – 0.84)1.23 Pa · sG = 8.78 (cS/ m – 0.67)2.22 N m–2. The scatter was greatest forG, possibly because at low degrees of shear the myofibrils were associated and this was confirmed by optical microscopy. Pronounced non-Newtonian behavior was observed and it was suggested that this was due to the disruption of aggregate structures, although at low concentration, orientation of the rods in the shear field may also be important.  相似文献   

5.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

6.
Suspensions consisting of particles of colloidal dimensions have been reported to form connected structures. When attractive forces act between particles in suspension they may flocculate and, depending on particle concentration, shear history and other parameters, flocs may build-up in a three-dimensional network which spans the suspension sample. In this paper a floc network model is introduced to interpret the elastic behavior of flocculated suspensions at small deformations. Elastic percolation concepts are used to explain the variation of the elastic modulus with concentration. Data taken from the suspension rheology literature, and new results with suspensions of magnetic -Fe2O3 and non-magnetic -Fe2O3 particles in mineral oil are interpreted with the model proposed.Non-zero elastic modulus appeared at threshold particle concentrations of about 0.7 vol.% and 0.4 vol.% of the magnetic and non-magnetic suspensions, respectively. The difference is attributed to the denser flocs formed by magnetic suspensions. The volume fraction of particles in the flocs was estimated from the threshold particle concentration by transforming this concentration into a critical volume concentration of flocs, and identifying this critical concentration with the theoretical percolation threshold of three-dimensional networks of different coordination numbers. The results obtained indicate that the flocs are low-density structures, in agreement with cryo-scanning electron micrographs. Above the critical concentration the dynamic elastic modulus G was found to follow a scaling law of the type G ( f - f c ) f , where f is the volume fraction of flocs in suspension, and f c is its threshold value. For magnetic suspensions the exponent f was found to rise from a low value of about 1.0 to a value of 2.26 as particle concentration was increased. For the non-magnetic a similar change in f was observed; f changed from 0.95 to 3.6. Two other flocculated suspension systems taken from the literature showed a similar change in exponent. This suggests the possibility of a change in the mechanism of stress transport in the suspension as concentration increases, i.e., from a floc-floc bond-bending force mechanism to a rigidity percolation mechanism.  相似文献   

7.
This work is a theoretical study on the effects of agglomeration on the fluidity and plasticity of a suspension of neutrally buoyant particles in a Newtonian fluid. The dynamics of a cluster of permanently attached spherical particles in a simple shear field is analyzed. The viscous and plastic components of the drag force acting on each of the agglomerated particles is then calculated and found to depend on the size of the individual particle unit, its location being relative to the center of the cluster and the material properties of the engulfing fluid. This information in conjunction with the knowledge of the interparticle cohesive forces is used to establish criteria for the agglomerate size reduction during dispersive mixing. From the kinematics of the cluster movement and the forces acting on its particulate components the rate of energy dissipation is calculated and utilized to evaluate the viscosity and yield stress of the suspension. These rheological parameters depend on the volume fraction and architecture of the agglomerate, the number of fused particles per cluster, and the viscosity of the suspending fluid. The analysis is also extended to include the case of polydispersity of agglomerate sizes.  相似文献   

8.
Techniques for measuring the fundamental flow properties of as-mined Victorian brown coal suspensions are developed. Flow properties are presented for Morwell, Yallourn and Loy Yang coals as a function of concentration for fixed particle size distribution. Even at the relatively low solids concentration of 20 to 30 percent by weight, the suspensions exhibit complex non-Newtonian characteristics. Generally at high concentration, the suspensions are thixotropic with a shear rate dependent viscosity and exhibit a yield stress. The inherent thixotropy of the coals can be exploited and it is technically but perhaps not economically feasible to transport the as-mined coals in a pipeline. The power requirement to pump the coals in a pipeline is found to be 10 to 30 times that required to pump black coal in the Black Mesa pipeline in the U.S.A. The differences in the rheological properties of the three coals is related to the surface properties of the coal particle — expressed in terms of carboxylate and inorganic cation content, and to differences in the pore volume of the coals. The flow characteristics of one coal can be converted to that of another simply by varying either the carboxylate or ionic content of the suspension.  相似文献   

9.
Results are reported for the dynamic moduli,G andG, measured mechanically, and the dynamic third normal stress difference, measured optically, of a series bidisperse linear polymer melts under oscillatory shear. Nearly monodisperse hydrogenated polyisoprenes of molecular weights 53000 and 370000 were used to prepare blends with a volume fraction of long polymer, L, of 0.10, 0.20, 0.30, 0.50, and 0.75. The results demonstrate the applicability of birefringence measurements to solve the longstanding problem of measuring the third normal stress difference in oscillatory flow. The relationship between the third normal stress difference and the shear stress observed for these entangled polymer melts is in agreement with a widely predicted constitutive relationship: the relationship between the first normal stress difference and the shear stress is that of a simple fluid, and the second normal stress difference is proportional to the first. These results demonstrate the potential use of 1,3-birefringence to measure the third normal stress difference in oscillatory flow. Further, the general constitutive equation supported by the present results may be used to determine the dynamic moduli from the measured third normal stress difference in small amplitude oscillatory shear. Directions for future research, including the use of birefringence measurements to determineN 2/N 1 in oscillatory shear, are described.  相似文献   

10.
Assuming the formation of doublets in the flow according to a mass action law, the shear rate and the concentration dependence of the extinction angle, of the birefringence, and of the average coil expansion are calculated for dilute solutions of flexible macromolecules. It is shown that this reversible association process has a strong influence on the measurable parameters in a flow birefringence experiment. c concentration (g/cm3) - h 2 mean square end-to-end distance at shear rate - h 0 2 mean-square end-to-end distance at zero-shear rate - n refractive index of the solution (not very different from the solvent for a very dilute solution) - E mean coil expansion - K 0,K constant of the mass action law - M molecular weight - R G gas constant - T absolute temperature - 12 optical anisotropy of the segment - 0 Deborah number: - Deborah number: - shear rate - 0, reduced concentration - s viscosity of the solvent - [] 0 intrinsic viscosity at zero-shear rate - [] intrinsic viscosity at shear rate - extinction angle - N a Avodagro's number - n magnitude of the birefringence  相似文献   

11.
By means of a cone and plate rheometer the relaxation of the shear stress and the first normal stress difference in polymer liquids upon cessation of a constant shear rate were examined. The experiments were conducted mostly in a high shear rate region of relevance for the processing of these materials. The relaxation behavior at these shear rates can only be measured accurately under extremely precise specifications of the rheometer. To determine under which conditions the integral normal thrust is a convenient measure for the relaxing local first normal stress difference the radial distribution of the pressure in the shear gap was measured. The shape of relaxation of both the shear stress and the first normal stress difference could be closely approximated for the entire measured shear rate and time range by a two parameter statistical function. In the range of measured shear rates, one of the parameters, the standard deviationS, is equal for the shear and the normal stress, and is independent of the shear rate within the limit of experimental error. The second parameter, the mean relaxation timet 50, of the shear stress andt 50, of the first normal stress difference, can be calculated approximately from the viscosity function and only a single relaxation experiment.  相似文献   

12.
The relationship between particle size distribution and viscosity of concentrated dispersions is of great industrial importance, since it is the key to get high solids dispersions or suspensions. The problem is treated here experimentally as well as theoretically for the special case of strongly interacting colloidal particles. An empirical model based on a generalized Quemada equation is used to describe η as a function of volume fraction for mono- as well as multimodal dispersions. The pre-factor η˜ accounts for the shear rate dependence of η and does not affect the shape of the η vs φ curves. It is shown here for the first time that colloidal interactions do not show up in the maximum packing parameter and φmax can be calculated from the particle size distribution without further knowledge of the interactions among the suspended particles. On the other hand, the exponent ɛ is controlled by the interactions among the particles. Starting from a limiting value of 2 for non-interacting either colloidal or non-colloidal particles, ɛ generally increases strongly with decreasing particle size. For a given particle system it then can be expressed as a function of the number average particle diameter. As a consequence, the viscosity of bimodal dispersions varies not only with the size ratio of large to small particles, but also depends on the absolute particle size going through a minimum as the size ratio increases. Furthermore, the well-known viscosity minimum for bimodal dispersions with volumetric mixing ratios of around 30/70 of small to large particles is shown to vanish if colloidal interactions contribute significantly. Received: 7 June 2000/Accepted: 12 February 2001  相似文献   

13.
Model composites of spherical glass particles dispersed in a matrix of high density polyethylene were prepared both with and without interfacial modification by an azidofunctional trialkoxysilane. Dynamic mechanical measurements of the composites in the melt state were recorded. The unmodified composites behave as theoretically predicted and the effect of particle—particle interaction at high volume fractions can be measured. The composites with a modified interfacial region have greater shear moduli due to the effect of a region surrounding the particle modified by the silane. The material in this region is largely bound to the glass surface and was examined by Fourier transform infrared spectroscopy after extraction of the bulk matrix. Theoretical calculations are shown to be useful in calculating the mechanical properties and volume fraction of the interfacial region.  相似文献   

14.
The rheological properties of glass fibre-filled polypropylene melts have been investigated. A high pressure capillary rheometer has been used for the experimental study. The effect of shear rate, temperature, and fibre concentration on the melt viscosity and viscoelastic properties have been studied. An equation has been proposed to correlate the melt viscosity with shear rate, temperature and fibre content. A master curve relation on this basis has been brought out using the shift factora T . a T shift factor (=/ r ) - A i coefficients of the polynomical of eq. (1) (i = 0, 1, 2, ,n) - B constant in the AFE equation (eq. (2)) (Pa s) - B constant in eq. (3) - D extrudate diameter - d capillary diameter - activation energy at constant shear rate (kcal/mole) - E activation energy at constant shear stress (kcal/mole) - T melt temperature (K) - X fraction glass fibre by weight - shear rate (s–1) - shear viscosity (Pa s) - normal stress coefficient (Pa s2) - 1 2 first normal-stress difference (Pa) - shear stress (Pa) - r at reference temperature  相似文献   

15.
In solutions of ABA-triblock copolymers in a poor solvent for A thermoreversible gelation can occur. A three-dimensional dynamic network may form and, given the polymer and the solvent, its structure will depend on temperature and polymer mass fraction. The zero-shear rate viscosity of solutions of the triblock-copolymer polystyrene-polyisoprene-polystyrene in n-tetradecane was measured as a function of temperature and polymer mass fraction, and analyzed; the polystyrene blocks contained about 100 monomers, the polyisoprene blocks about 2000 monomers. Empirically, in the viscosity at constant mass fraction plotted versus inverse temperature, two contributions could be discerned; one contribution dominating at high and the other one dominating at low temperatures. In a comparison with theory, the contribution dominating at low temperatures was identified with the Lodge transient network viscosity; some questions remain to be answered, however. An earlier proposal for defining the gelation temperature T gel is specified for the systems considered, and leads to a gelation curve; T gel as a function of polymer mass fraction.Mathematical symbols {} functional dependence; e.g., f{x} means f is a function of x - p log logarithm to the base number p; e.g., 10log is the common logarithm - exp exponential function with base number e - sin trigonometric sine function - lim limit operation - – in integral sign: Cauchy Principal Value of integral, e.g., - derivative to x - partial derivative to x Latin symbols dimensionless constant - b constant with dimension of absolute temperature - constant with dimension of absolute temperature - B dimensionless constant - c mass fraction - dimensionless constant - constant with dimension of absolute temperature - d * dimensionless constant - D{0} constant with dimension of absolute temperature - e base number of natural (or Naperian) logarithm - g distribution function of inverse relaxation times - G relaxation strength relaxation function - h distribution function of relaxation times reaction constant enthalpy of a molecule - H Heaviside unit step function - i complex number defined by i 2 = –1 - j{0} constant with dimension of viscosity - j index number - k Boltzmann's constant - k H Huggins' coefficient - m mass of a molecule - n number - N number - p index number - s entropy of a molecule - t time - T absolute temperature Greek symbols as index: type of polymer molecule - as index: type of polymer molecule - shear as index: type of polymer molecule - shear rate - small variation; e.g. T is a small variation in T relative deviation Dirac delta distribution as index: type of polymer molecule - difference; e.g. is a difference in chemical potential - constant with dimension of absolute temperature - (complex) viscosity - constant with dimension of viscosity - [] intrinsic viscosity number - inverse of relaxation time - chemical potential - number pi; circle circumference divided by its diameter - mass per unit volume - relaxation time shear stress - angular frequency  相似文献   

16.
The effect of temperature on the steady-shear viscosity of two base emulsions (water-in-creosote (w/o) and creosote-in-water (o/w)) and a pigment emulsified creosote (PEC) was investigated. The PEC is a water-in-creosote emulsion which contains also a solid, micronised pigment, and is used industrially as a wood preservative. All three emulsions exhibited shear thinning characteristics at different temperatures. The viscosity-shear rate relationships follow a modified Quemada model. A temperature-superposition method using the reduced variables / and t c was applied to yield a master plot for each of these emulsions at different temperatures. The effect of creosote concentration on the viscosity of four other o/w emulsions at different temperatures was also studied. The same reduced variables were able to produce a temperature-concentration superposition plot for all of the o/w emulsion results.The effective (average) radius of the globules (dispersed phase) was found to increase with increasing temperature for the base w/o and the PEC emulsion. The collision theory could be used to explain the increase in the droplet size. However, while little overall variation in globule size was observed for the o/w emulsions, microscopic observation indicated an increase in the proportion of large diameter droplets with temperature at the highest creosote concentration (60%). A creaming effect (phase concentration) was observed with these emulsions at higher temperatures, precluding an accurate estimate of droplet size based on collision theory.Seconded from Koppers Coal Tar Products, Newcastle, N.S.W., Australia.  相似文献   

17.
If the viscosity can be expressed in the form = (T)f(), the walls are at a constant temperatureT 0, and the extra stress, velocity and temperature fields are fully developed, then the wall shear rate can be calculated by applying the Weissenberg-Rabinowitsch operator toF c Q instead of to the flow rateQ, whereF c is a correction factor which differs from 1 when the temperature field is non-uniform; the isothermal equation relating the wall shear stress and pressure gradient is still valid. For the case in whcih = 0|| n /(1 +(TT 0)), wheren, 0, and are independent of shear stress and temperatureT, an exact analytical expression forF c in terms of the Nahme-Griffith numberNa andn is obtained. Use of this expression gives agreement with data obtained for degassed decalin ( = 2.5 mPa s) from a new miniature slit-die viscometer at shear rates up to 5 × 106s–1; here, the correction is only 7%,Na is 1.3, andGz, the Graetz number at the die exit, is 119. For a Cannon standard liquidS6 ( = 9 mPa s), agreement extends up to 5 × 105s–1; at 2×106s–1 (whereNa = 7.2 andGz = 231), the corrections are 11% (measured) and 36% (calculated).Notation x, y Cartesian coordinates - v x ,v velocity inx-direction, dimensionless velocity - p xx ,p yy normal stress onx- andy-planes - N 1 first normal stress difference - shear stress ony-planes acting inx-direction - w value of shear stress at the wall - shear rate, shear rate at the wall - Q, Q flow rate (Eqs. (2.13), (2.15)) - T, T 0 temperature, temperature at the wall - ø, dimensionless temperature (Eqs. (2.24), (2.25)) - h, w half of die height, width of die - R diameter of a tube - , 0 viscosity, viscosity atT = T 0 - viscosity-temperature coefficient - k thermal conductivity - c p specific heat at constant pressure - n, m dimensionless parameters characterizing shear stress dependence of viscosity - Na Nahme Griffith number (Eq. (2.21)) - Gz Graetz number (Eq. (5.1)) - F c viscous heating correction factor (Eq. (2.18)) - ( ) a function characterizing temperature dependence of viscosity (Eq. (2.8)) - J k ( ) Bessel function of the first kind This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

18.
On the basis of a brief analysis of well known normal-stress calculation methods, the necessity of improved models of prediction is elaborated. A modified form of the so-called mirror relation which meets these requirements is presented. In combination with the Carreau viscosity equation, an analytical solution is given which leads to a Carreau normal-stress coefficient equation and, thus, to a simple method of calculation. The comparison between measured normal stresses and those determined by experiments shows that the values calculated in accordance with the presented method agree well with the measured values, especially within the range of high shear rates. The parameters andK to be selected for this purpose are determined in dependence on the slope of the viscosity function 1 at high shear rates for each polymer individually, using empirical relations so that the global selection of parameters, which is common practice with other methods, is obviated. In an appendix a method for deriving the relations between material functions on the basis of operator calculation is given.Extended version of a paper read at the 2nd Symposium on Rheology of the GDR in Tabarz/Thuringia, December 7–11, 1987  相似文献   

19.
J. Kunnen 《Rheologica Acta》1988,27(6):575-579
The Fulcher-Tammann-Hesse-Vogel equation, ln = A + B/(T – T 0 ), is shown to be equivalent to the general viscosity-composition relationship, ln r =k f /(1 – f ), for binary mixtures. The Cailletet-Mathias law of the Rectilinear Diameter is rearranged to represent a density mixture formula for two components. Temperature-independent viscosities and densities can then be calculated for dense, solid cluster fractions, dispersed in a low-density, low-viscosity non-clustered continuous phase. The cluster fraction decreases with temperature. The value ofT 0 is shown to be related to the liquid- or solid-like behavior of the clusters. For liquids with a vapor pressure < 1 mm Hg at the melting point, the calculated cluster volume fraction suggests close packing of clusters, ranging in shape from monodisperse spheres to polydisperse non-spherical particles. Examples are given for molecular liquids, molten metals, and molten salts. The size of the clusters is estimated from the heat of evaporation.  相似文献   

20.
In order to investigate the effect of the particle size distribution on the rheological properties of concentrated colloidal dispersions both steady-state shear and oscillatory measurements have been performed on well-characterized bimodal dispersions of sterically stabilized PMMA particles. Replacing a minor amount of large particles by small ones in a concentrated dispersion, keeping the total effective volume fraction constant, decreases the viscosity quite drastically. On the other hand, replacing a small amount of small particles by big ones hardly effects the viscosity at all. This behavior can be attributed to the deformability of the stabilizing polymer layer. A procedure is proposed to calculate the limiting viscosities in a bimodal colloidal dispersion starting from the characteristics of the monodisperse systems. A good agreement has been obtained between the calculated values and the experimental results. The linear viscoelastic properties of the concentrated dispersions have been investigated by means of oscillatory measurements. The plateau values of the storage modulus for the bimodal dispersions decrease with an increasing fraction of the coarse particles. By substituting the bimodal dispersion by an equivalent monodisperse system the storage modulus can be superimposed on the values for the monodisperse suspensions when plotted as a function of the mean interparticle distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号