首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a smooth, bounded domain R, n 3, and a real, positive parameter, we consider the hyperbolic equationu tt +u t u=–f(u)g in with Dirichlet boundary conditions. Under certain conditions onf, this equation has a global attractorA inH 0 1 () ×L 2(). For=0, the parabolic equation also has a global attractor which can be naturally embedded into a compact setA 0 inH 0 1 () ×L 2(). If all of the equilibrium points of the parabolic equation are hyperbolic, it is shown that the setsA are lower semicontinuous at=0. Moreover, we give an estimate of the symmetric distance betweenA 0 andA .  相似文献   

2.
Übersicht Es werden verschiedene Bedingungen aufgestellt, die es erlauben, die durch die beiden (Systeme von) nichtlinearen DifferentialgleichungenA (u, ) = q, B (u, ) = und Randbedingungen zusammen mit den nichtlinearen algebraischen Relationenq = C(u, ), = D(u, ) beschriebene Aufgabe durch äquivalente Variationsprobleme zu ersetzen. Dabei zeigt sich ein enger Zusammenhang mit den in der Festkörpermechanik wohlbekannten Prinzipien der virtuellen Verschiebungen und der virtuellen Kräfte. Die auf systematischem Weg konstruierten Variationsfunktionale enthalten viele in der Physik bekannte Funktionale als Sonderfälle, insbesondere jene, die in der Elastomechanik nach Green, Castigliano, Hellinger, Reißner, Hu und Washizu benannt werden.
Summary In this paper there are established various conditions which allow a variational formulation of the problem described by the two (systems of) nonlinear differential equationsA(u, ) = q, B(u, ) = and boundary conditions together with the nonlinear algebraic relationsq = C(u, ), = D(u, ). Besides a close relationship is revealed to the principles of virtual displacements and virtual forces which are wellknown in solid mechanics. The systematically constructed variational functional contain many functionals in physics as special cases, mainly those of Green, Castigliano, Hellinger, Reißner, Hu and Washizu in elastomechanics.
  相似文献   

3.
Very few studies have been made of three-dimensional nonstationary cavitation flows. In [1, 2], differential equations were obtained for the shape of a nonstationary cavity by means of a method of sources and sinks distributed along the axis of thin axisymmetric body and the cavity. In the integro-differential equation obtained in the present paper, allowance is made for a number of additional terms, and this makes it possible to dispense with the requirement ¦ In ¦ 1 adopted in [1, 2]. The obtained equation is valid under the weaker restriction 1. In [3], the problem of determining the cavity shape is reduced to a system of integral equations. Examples of calculation of the cavity shape in accordance with the non-stationary equations of [1–3] are unknown. In [4], an equation is obtained for the shape of a thin axisymmetric nonstationary cavity on the basis of a semiempirical approach. In the present paper, an integro-differential equation for the shape of a thin axisymmetric nonstationary cavity is obtained to order 2 ( is a small constant parameter which has the order of the transverse-to-longitudinal dimension ratio of the system consisting of the cavity-forming body, the cavity, and the closing body). A boundary-value problem is formulated and an analytic solution to the corresponding differential equation is obtained in the first approximation (to terms of order 2 In ), A number of concrete examples is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 38–47, July–August, 1980.I thank V. P. Karlikov and Yu. L. Yakimov for interesting discussions of the work.  相似文献   

4.
For the problem of bending of a semi-infinite strip x0, –1y1, with the sides y=±1 clamped, we give a proof that the end-data% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaarmWu51MyVXgaiuGacqWFgpGzdaWgaaWcbaGaaeiEaiaabIha% aeqaaGqbaOGae4hiaaIaaiikaiaaicdacaGGSaGae4hiaaIaamyEai% aacMcacqGFGaaicqGH9aqpcqGFGaaicaWGMbGaaiikaiaadMhacaGG% PaGaaiilaaqaaiab-z8aMnaaBaaaleaacaqG5bGaaeyEaaqabaGccq% GFGaaicaGGOaGaaGimaiaacYcacqGFGaaicaWG5bGaaiykaiab+bca% Giabg2da9iab+bcaGiaadAgacaGGOaGaamyEaiaacMcacaGGSaaaaa% a!5D6D!\[\begin{array}{l} \phi _{{\rm{xx}}} (0, y) = f(y), \\ \phi _{{\rm{yy}}} (0, y) = f(y), \\ \end{array}\] where f(y), g(y) are arbitrary independent functions prescribed on (–1,1), may be expanded as a series of the bi-orthogonal Papkovich-Fadle eigenfunctions for the strip. This represents an advance on the standard work of R. T. C. Smith [6], who proved such an expansion, but under conditions which are often not satisfied in practice. In particular we are able to solve this bi-harmonic boundary value problem when f, g do not satisfy the side conditions% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaacaWGMbGaaiikaiabgglaXkaaigdacaGGPaqedmvETj2BSbac% faGae8hiaaIaeyypa0Jae8hiaaIaamOzamaaCaaaleqabaGaai4jaa% aakiab-bcaGiaacIcacqGHXcqScaaIXaGaaiykaiab-bcaGiabg2da% 9iab-bcaGiaaicdacaGGSaaabaGaam4zaiaacIcacqGHXcqScaaIXa% Gaaiykaiab-bcaGiabg2da9iab-bcaGiaadEgadaahaaWcbeqaaiaa% cEcaaaGccqWFGaaicaGGOaGaeyySaeRaaGymaiaacMcacqWFGaaicq% GH9aqpcqWFGaaicaaIWaGaaiilaaaaaa!6222!\[\begin{array}{l} f( \pm 1) = f^' ( \pm 1) = 0, \\ g( \pm 1) = g^' ( \pm 1) = 0, \\ \end{array}\]and when the conditions of consistency% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa8qmaeaacaWGNbGaaiikaiaadMhacaGGPaqedmvETj2BSbacfaGa% e8hiaaIaamizaiaadMhacqWFGaaicqWF9aqpcqWFGaaidaWdXaqaai% aadMhacaWGNbGaaiikaiaadMhacaGGPaGae8hiaaIaamizaiaadMha% cqWFGaaicqGH9aqpcqWFGaaicaaIWaaaleaacqWFsislcqWFXaqmae% aacqWFXaqma0Gaey4kIipaaSqaaiabgkHiTiaaigdaaeaacaaIXaaa% niabgUIiYdaaaa!5A1B!\[\int_{ - 1}^1 {g(y) dy = \int_{ - 1}^1 {yg(y) dy = 0} } \]are not satisfied.The present completeness proof thus answers questions raised recently (in the mathematically equivalent context of Stokes flow) by Joseph [3], and Joseph and Sturges [5], who showed that if the side conditions (A), (B) are relaxed then the corresponding eigenfunction series may still converge; but they left open the more difficult question of whether these series still converge to the data.The method of proof used here also succeeds in proving a corresponding completeness theorem for the Williams eigenfunctions for the wedge with the data.% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcea% qabeaadaabciqaamaalaaabaGaeyOaIylabaGaeyOaIyRaamOCaaaa% daqadiqaamaalaaabaGaaGymaaqaaiaadkhaaaqedmvETj2BSbacfi% Gae8NXdygacaGLOaGaayzkaaaacaGLiWoadaWgaaWcbaGaamOCaiab% g2da9iaaigdaaeqaaGqbaOGae4hiaaIaeyypa0Jae4hiaaIaamOzai% aacIcacqaH4oqCcaGGPaGaaiilaaqaamaaeiGabaWaaSaaaeaacqGH% ciITdaahaaWcbeqaaiaaikdaaaGccqaHgpGzaeaacqGHciITcqaH4o% qCdaahaaWcbeqaaiaaikdaaaaaaOWaaeWaceaadaWcaaqaaiaaigda% aeaacaWGYbaaaiab-z8aMbGaayjkaiaawMcaaaGaayjcSdWaaSbaaS% qaaiaadkhacqGH9aqpcaaIXaaabeaakiab+bcaGiabg2da9iab+bca% GiaadEgacaGGOaGaeqiUdeNaaiykaiaacYcaaaaa!6B9C!\[\begin{array}{l} \left. {\frac{\partial }{{\partial r}}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = f(\theta ), \\ \left. {\frac{{\partial ^2 \phi }}{{\partial \theta ^2 }}\left( {\frac{1}{r}\phi } \right)} \right|_{r = 1} = g(\theta ), \\ \end{array}\]prescribed on –<<, (where 2 is the wedge angle).Department of Mathematics, University of ManchesterOn leave of absence at the University of British Columbia, Vancouver, B.C. Canada, during 1977–79. This work was supported in part by N.R.C. grants Nos. A 9259 and A9117.  相似文献   

5.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

6.
We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, av, is plotted for different nondimensional parameters such as conduction parameter, , the aspect ratios of the tube, and 0 and the index of power-law fluid, n.  相似文献   

7.
We describe a system in which vortices are shed from a cylindrical free surface approximately centered in a rotating flow. Shedding is controlled by the parameter =2 g/ 2 d, where g, , d denote gravity, rotation rate and the diameter of the free surface. We find vortex shedding for >0.162 and no vortex shedding for < 0.0847. The range depends on the aspect ratio L/d, where L is the column length, in a nonmonotonic fashion. These results are independent of viscosity and surface tension for small values of these parameters.Now at Martin Marietta, Orlando Aerospace, PO Box 5837, Mail Point 150, Orlando, FL 32855, USA  相似文献   

8.
In the case of the 3D Navier-Stokes equations, it is proved that there exists a constant>0 with the following property: Every time-periodic solution with a period smaller than is necessarily a stationary solution. An explicit formula for is also provided.  相似文献   

9.
Dynamics of solutions to a reaction-diffusion system in a domain of specific shape is investigated under the homogeneous Neumann boundary conditions. It is assumed that the domain hasN large regionsD i ,i=1,...,N, and thin channelsQ i,j () connectingD i andD j , which approach a line segment as 0 in some sense. In such a domain the firstN eigenvalues of – with the Neumann boundary conditions tend to zero as 0, while the (N + 1)-th eigenvalue is bounded away from zero. By virtue of this gap of the eigenvalues, an inertial manifold which is invariant and attracts every solution exponentially can be constructed under a certain condition. Moreover, the ODE describing the dynamics on the inertial manifold can be given in quite an explicit form through the analysis of the limit of the manifold as 0.  相似文献   

10.
The elliptic boundary value problem % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGHsi% slcqGHuoarcaWG1bGaeyypa0dccaGae8hiaaIaaGymaiab-bcaGiab% -bcaGiab-bcaGiaabMgacaqGUbGaaeiiaiabfM6axjaabYcaaeaaae% aacaWG1bGaeyypa0JaaGimaiab-bcaGiab-bcaGiab-bcaGiaab+ga% caqGUbGaaeiiaiabgkGi2kabfM6axjaabYcaaaaa!4E11!\[\begin{gathered}- \Delta u = 1 {\text{in }}\Omega {\text{,}} \hfill \\\hfill \\u = 0 {\text{on }}\partial \Omega {\text{,}} \hfill \\\end{gathered}\]is considered. The Saint Venant's conjecture for convex plane domains , having symmetry about two orthogonal axes, is that the maximum of |u| occurs only at the points on which are nearest to the origin. G. Sweers constructed one such domain and claimed that either the conjecture fails for or for ={(x, y);u(x, y) >}, which again is convex. We give a totally different proof of this claim. Our proof brings out clearly the reason for the failure of the conjecture and also allows us to construct many more such domains.  相似文献   

11.
Zusammenfassung Der Wärmeübergang bei turbulenter Film kondensation strömenden Dampfes an einer waagerechten ebenen Platte wurde mit Hilfe der Analogie zwischen Impuls-und Wärmeaustausch untersucht. Zur Beschreibung des Impulsaustausches im Film wurde ein Vierbereichmodell vorgestellt. Nach diesem Modell wird die wellige Phasengrenze als starre rauhe Wand angesehen. Die Abhängigkeit einer Schubspannungs-Nusseltzahl von der Film-Reynoldszahl und Prandtlzahl wurde berechnet und dargestellt.
A model for turbulent film condensation of flowing vapour
The heat transfer in turbulent film condensation of flowing vapour on a horizontal flat plate was investigated by means of the analogy between momentum and heat transfer. To describe the momentum transfer in the film a four-region model was presented. With this model the wavy interfacial surface is treated as a stiff rough wall. A shear Nusselt number has been calculated and represented as a function of film Reynolds number and Prandtl number.

Formelzeichen a Temperaturleitkoeffizient - k Mischungswegkonstante - k s äquivalente Sandkornrauhigkeit - Nu x lokale Schubspannungs-Nusseltzahl,Nu x=xxv/uw - Pr Prandtlzahl,Pr=v/a - Pr t turbulente Prandtlzahl,Pr t =m/q - q Wärmestromdichte q - R Wärmeübergangswiderstand - Rf Wärmeübergangswiderstand des Films - Re F Reynoldszahl der Filmströmung - T Temperatur - U, V Geschwindigkeitskomponenten des Dampfes in waagerechter und senkrechter Richtung - u, Geschwindigkeitskomponenten des Kondensats in waagerechter und senkrechter Richtung - V Querschwankungsgeschwindigkeit des Kondensats und des Dampfes - u /gtD Schubspannungsgeschwindigkeit an der Phasengrenze für die Dampfgrenzschicht, uD =(/)1/2 - u F Schubspannungsgeschwindigkeit an der Phasengrenze für den Kondensatfilm,u F =(/)1/2 - u w Schubspannungsgeschwindigkeit an der Wand der Kühlplatte,u w =(w/)1/2 - y Wandabstand - x Wärmeübergangskoeffizient - gemittelte Kondensatfilmdicke - s Dicke der zähen Schicht der Filmströmung an der welligen Phasengrenze - 4 Dicke der zähen Schicht der Filmströmung an der gemittelten glatten Phasengrenze - Wärmeleitzahl - dynamische Viskosität - v kinematische Viskosität - Dichte - Oberflächenspannung - w Wandschubspannung - Schubspannung an der Phasengrenzfläche - m turbulente Impulsaustauschgröße - q turbulente Wärmeaustauschgröße Indizes d Wert des Dampfes - w Wert an der Wand - x lokaler Wert inx - Wert an der Phasengrenze Stoffgrößen ohne Index gelten für das Kondensat  相似文献   

12.
We consider a family of linearly elastic shells indexed by their half-thickness , all having the same middle surface % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadofacqGH9aqpcqaHvpGAcaGGOaGafqyYdCNbaebacaGGPaaa% aa!4317!\[S = \varphi (\bar \omega )\], with % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabew9aQjaacQdacuaHjpWDgaqeaiabgkOimlaadkfadaahaaWc% beqaaiaaikdaaaGccqGHsgIRcaWGsbWaaWbaaSqabeaacaaIZaaaaa% aa!4812!\[\varphi :\bar \omega \subset R^2 \to R^3 \], and clamped along a portion of their lateral face whose trace on S is % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabew9aQjaacIcacqaHZoWzdaWgaaWcbaGaaGimaaqabaGccaGG% Paaaaa!41EB!\[\varphi (\gamma _0 )\], where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacIcacqaHZoWzdaWgaaWcbaGaaGimaaqabaGccaGGPaaaaa!401F!\[(\gamma _0 )\] is a fixed portion of with length % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacIcacqaHZoWzdaWgaaWcbaGaaGimaaqabaGccaGGPaGaeyOp% a4JaaGimaaaa!41E1!\[(\gamma _0 ) > 0\]. Let % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacIcacqaHZoWzdaWgaaWcbaGaeqySdeMaeqOSdigabeaakiaa% cIcacqaH3oaAcaGGPaGaaiykaaaa!45AA!\[(\gamma _{\alpha \beta } (\eta ))\] be the linearized strain tensor of S. We make an essential geometric and kinematic assumption, according to which the semi-norm % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqGHflY1caGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaaaaa!4345!\[| \cdot |_\omega ^M \] defined by % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqaH3oaAcaGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaGccqGH9aqpdaGadeqaamaaqababaGaaiiFaiaacYhaaSqaaiabeg% 7aHfrbbjxAHXgaiuaacaWFSaGaeqOSdigabeqdcqGHris5aOGaeq4S% dCMaeqySdeMaeqOSdiMaaiikaiabeE7aOjaacMcacaGG8bGaaiiFam% aaDaaaleaacaWGmbWaaWbaaWqabeaacaaIYaaaaSGaaiikaiabeM8a% 3jaacMcaaeaacaaIYaaaaaGccaGL7bGaayzFaaWaaWbaaSqabeaaca% aIXaGaai4laiaaikdaaaaaaa!61F1!\[|\eta |_\omega ^M = \left\{ {\sum\nolimits_{\alpha ,\beta } {||} \gamma \alpha \beta (\eta )||_{L^2 (\omega )}^2 } \right\}^{1/2} \] is a norm over the space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadAfacaGGOaGaeqyYdCNaaiykaiabg2da9maacmqabaGaeq4T% dGMaeyicI4SaamisamaaCaaaleqabaGaaGymaaaakiaacIcacqaHjp% WDcaGGPaGaai4oaiabeE7aOjabg2da9iaab+gacaqGUbGaeq4SdC2a% aSbaaSqaaiaabcdaaeqaaaGccaGL7bGaayzFaaaaaa!5361!\[V(\omega ) = \left\{ {\eta \in H^1 (\omega );\eta = {\text{on}}\gamma _{\text{0}} } \right\}\], excluding however the already analyzed membrane shells, where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabeo7aNnaaBaaaleaacaqGWaaabeaakiabg2da9iabgkGi2kab% eM8a3baa!42F8!\[\gamma _{\text{0}} = \partial \omega \] and S is elliptic. This new assumption is satisfied for instance if % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabeo7aNnaaBaaaleaacaqGWaaabeaakiabgcMi5kabgkGi2kab% eM8a3baa!43B9!\[\gamma _{\text{0}} \ne \partial \omega \] and S is elliptic, or if S is a portion of a hyperboloid of revolution.We then show that, as 0, the averages % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaalaaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiabew7aLbaa% aaGcdaWdXaqaaiaadwhadaqhaaWcbaGaamyAaaqaaiabew7aLbaaki% aabsgacaWG4bWaa0baaSqaaiaaiodaaeaacqaH1oqzaaaabaGaeyOe% I0IaeqyTdugabaGaeqyTduganiabgUIiYdaaaa!4E28!\[\frac{1}{{2^\varepsilon }}\int_{ - \varepsilon }^\varepsilon {u_i^\varepsilon {\text{d}}x_3^\varepsilon } \] across the thickness of the shell of the covariant components u i of the displacement of the points of the shell strongly converge in the completion V M #() of V() with respect to the norm % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqGHflY1caGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaaaaa!4345!\[| \cdot |_\omega ^M \], toward the solution of a generalized membrane shell problem. This convergence result also justifies the recent formal asymptotic approach of D. Caillerie and E. Sanchez-Palencia.The limit problem found in this fashion is sensitive, according to the terminology recently introduced by J.L. Lions and E. Sanchez-Palencia, in the sense that it possesses two unusual features: it is posed in a space that is not necessarily contained in a space of distributions, and its solution is highly sensitive to arbitrarily small smooth perturbations of the data.Under the same assumption, we also show that the average % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaalaaabaGaaGymaaqaaiaaikdadaahaaWcbeqaaiabew7aLbaa% aaGcdaWdXaqaaiaadwhadaqhaaWcbaGaamyAaaqaaiabew7aLbaaki% aabsgacaWG4bWaa0baaSqaaiaaiodaaeaacqaH1oqzaaaabaGaeyOe% I0IaeqyTdugabaGaeqyTduganiabgUIiYdaaaa!4E28!\[\frac{1}{{2^\varepsilon }}\int_{ - \varepsilon }^\varepsilon {u_i^\varepsilon {\text{d}}x_3^\varepsilon } \] where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadwhadaahaaWcbeqaaiabew7aLbaakiabg2da9iaacIcacaWG% 1bWaa0baaSqaaiaadMgaaeaacqaH1oqzaaGccaGGPaaaaa!452C!\[u^\varepsilon = (u_i^\varepsilon )\], and the solution % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabe67a4naaCaaaleqabaGaeqyTdugaaOGaeyicI4SaamOvamaa% BaaaleaacaWGlbaabeaakiaacIcacqaHjpWDcaGGPaaaaa!465B!\[\xi ^\varepsilon \in V_K (\omega )\] of Koiter's equations have the same principal part as 0 in the same space V M () as above. For such generalized membrane shells, the two-dimensional shell model of W.T. Koiter is thus likewise justified.We also treat the case where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqGHflY1caGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaaaaa!4345!\[| \cdot |_\omega ^M \] is no longer a norm over V(), but is a norm over the space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadAfadaWgaaWcbaGaam4saaqabaGccaGGOaGaeqyYdCNaaiyk% aiabg2da9maacmqabaGaeq4TdGMaeyypa0JaaiikaiabeE7aOnaaBa% aaleaacaWGPbaabeaakiaacMcacqGHiiIZcaWGibWaaWbaaSqabeaa% caaIXaaaaOGaaiikaiabeM8a3jaacMcacqGHxdaTcaWGibWaaWbaaS% qabeaacaaIYaaaaOGaaiikaiabeM8a3jaacMcacaGG7aGaeq4TdG2a% aSbaaSqaaiaadMgaaeqaaOGaeyypa0JaeyOaIy7aaSbaaSqaaiaadA% haaeqaaOGaeq4TdG2aaSbaaSqaaiaaiodaaeqaaOGaeyypa0JaaGim% aiGac+gacaGGUbGaeq4SdC2aaSbaaSqaaiaaicdaaeqaaaGccaGL7b% GaayzFaaaaaa!68B8!\[V_K (\omega ) = \left\{ {\eta = (\eta _i ) \in H^1 (\omega ) \times H^2 (\omega );\eta _i = \partial _v \eta _3 = 0\operatorname{on} \gamma _0 } \right\}\], thus also excluding the already analyzed flexural shells. Then a convergence theorem can still be established, but only in the completion of the quotient space V()/V 0() with repect to % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaacYhacqGHflY1caGG8bWaa0baaSqaaiabeM8a3bqaaiaad2ea% aaaaaa!4345!\[| \cdot |_\omega ^M \], where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadAfadaWgaaWcbaGaaGimaaqabaGccaGGOaGaeqyYdCNaaiyk% aiabg2da9maacmqabaGaeq4TdGMaeyicI4SaamOvaiaacIcacqaHjp% WDcaGGPaGaai4oaiabeo7aNjabeg7aHjabek7aIjaacIcacqaH3oaA% caGGPaGaeyypa0JaaeimaiaabMgacaqGUbGaeqyYdChacaGL7bGaay% zFaaaaaa!5997!\[V_0 (\omega ) = \left\{ {\eta \in V(\omega );\gamma \alpha \beta (\eta ) = {\text{0in}}\omega } \right\}\].These convergence results, together with those that we already obtained for membrane and flexural shells, jointly with B. Miara in the second case, thus constitute an asymptotic analysis of linearly elastic shells in all possible cases.  相似文献   

13.
In this paper we present an asymptotic analysis of the three-dimensional problem for a thin linearly elastic cantilever =×(0,l) with rectangular cross-section of sides and 2, as goes to zero. Under suitable assumptions on the given loads, we show that the three-dimensional problem converges in a variational sense to the classical one-dimensional model for extension, flexure and torsion of thin-walled beams. Mathematics Subject Classifications (2000) 474K20, 74B10, 49J45.  相似文献   

14.
A simplified model was developed for describing the heat and mass transfer through a gas-liquid or a solid-liquid interface of a wavy or turbulent falling liquid film. The model assumes that turbulent transport near a gas-liquid or a solid liquid interface is governed by eddies whose length and velocity scales can be characterized by bulk turbulence and that in a region near the interface, the turbulence is damped by viscosity and not surface tension. A comparison with literature correlations and data shows that the model can predict the general form of the equations used in correlating transfer coefficients in wavy and turbulent falling films with or without interfacial shear.
Modellierung von Wärme- und Stoffübertragung in einem welligen und turbulenten Rieselfilm
Zusammenfassung Es wurde ein vereinfachtes Modell entwickelt, das den Wärme-und Stoffübergang über die Phasengrenze von gasförmig-flüssig oder fest-flüssig an einem welligen turbulenten Rieselfilm beschreibt. Das Modell nimmt an, daß der turbulente Transport in der Nähe der gasförmigen-flüssigen oder festenflüssigen Phasengrenze durch Wirbel bestimmt wird, deren Längen-und Geschwindigkeitsmaße durch den Turbulenzgrad in der Strömung charakterisiert sind und daß in unmittelbarer Nähe der Phasengrenze die Turbulenz durch die Viskosität und nicht durch die Oberflächenspannung gedämpft wird. Ein Vergleich mit Werten aus der Literatur und den gefundenen Daten zeigt, daß das Modell die generelle Form von Gleichungen vorhersagen kann, wie sie zur Berechnung von Transportkoeffizienten in welligem und turbulentem Rieselfilm mit oder ohne Schubspannung an der Phasengrenze benutzt werden.

Nomenclature a proportionality constant in eddy diffusivity expression, s–1 - C p heat capacity at constant pressure, J/kg °K - d tube diameter, m - D molecular diffusivity of gas or solid in liquid, m2/s - g, g c gravitational acceleration constant, m/s2; proportionality factor, kg m/N s2 - h, h * heat transfer coefficient, W/m2 °K; (h/k) (v2/g)1/3, dimensionless - k thermal conductivity of liquid, W/m °K - k L , k L * liquid-side mass transfer coefficient, m/s; (k L/D) (v2/g)1/3, dimensionless - l D , l H eddy mixing length for mass; for heat, m - l 0 eddy mixing length in bulk liquid, m - L tube length, m - m, n exponent - Pr Prandtl number,c p/k - q heat flux, W/m2 - Q volumetric flow rate, l/min - Re film Reynolds number, 4Q/ dv or 4 / - Sc Schmidt number,v/D - T b ,T w bulk liquid temperature; wall temperature - y , y y-component eddy fluctuating velocity;Y-component, m/s - v0 eddy velocity in the bulk liquid, m/s - v * friction velocity, ( wgc/)1/2, m/s - v i * friction velocity at gas-liquid interface, ( igc/)1/2, m/s - y normal distance measured from the gas-liquid interface, m - Y normal distance measured from the solid-liquid interface, m - thermal diffusivity, m2/s - mass flow rate per unit periphery, kg/m s - film thickness, m - (*, + dimensionless film thickness, /(v2/g)1/3;v */v - D , H eddy diffusivity for mass; for heat, m2/s - thickness of the zone of damped turbulence, m - surface tension, N/m - v kinematic viscosity, m2/s - liquid density, kg/m3 - w , i shear stress at wall; at interface, N/m2 - i * dimensionless interfacial shear, i g c / (vg) 2/3  相似文献   

15.
This paper is the continuation of article [7]. It gives further results about the asymptotic expression for the solution of higher order elliptic equation in the case of boundary perturbation combined with operator perturbation. When unperturbed problemA 0 is not on the spectrum, the asymptotic expression for the solution of perturbation problemA may be expanded with respect to the small parameter . WhileA 0 is on the spectrum, the asymptotic expression of the solution contains negative powers of the small parameter . The approximation of arbitrary order to the solution is considered and the recursive formula for the general term and the estimation of remainder term are given.  相似文献   

16.
This paper reports the investigation of mean and turbulent flow characteristics of a two-dimensional plane diffuser. Both experimental and theoretical details are considered. The experimental investigation consists of the measurement of mean velocity profiles, wall static pressure and turbulence stresses. Theoretical study involves the prediction of downstream velocity profiles and the distribution of turbulence kinetic energy using a well tested finite difference procedure. Two models, viz., Prandtl's mixing length hypothesis and k- model of turbulence, have been used and compared. The nondimensional static pressure distribution, the longitudinal pressure gradient, the pressure recovery coefficient, percentage recovery of static pressure, the variation of U max/U bar along the length of the diffuser and the blockage factor have been valuated from the predicted results and compared with the experimental data. Further, the predicted and the measured value of kinetic energy of turbulence have also been compared. It is seen that for the prediction of mean flow characteristics and to evaluate the performance of the diffuser, a simple turbulence model like Prandtl's mixing length hypothesis is quite adequate.List of symbols C 1 , C 2 ,C turbulence model constants - F x body force - k kinetic energy of turbulence - l m mixing length - L length of the diffuser - u, v, w rms value of the fluctuating velocity - u, v, w turbulent component of the velocity - mean velocity in the x direction - A average velocity at inlet - U bar average velocity in any cross section - U max maximum velocity in any cross section - V mean velocity in the y direction - W local width of the diffuser at any cross section - x, y coordinates - dissipation rate of turbulence - m eddy diffusivity - Von Karman constant - mixing length constant - l laminar viscosity - eff effective viscosity - v kinematic viscosity - density - k effective Schmidt number for k - effective Schmidt number for - stream function - non dimensional stream function  相似文献   

17.
This paper presents the exact analytical solution for the general case of transient mass transfer between a solid with a biporous structure (with a micro and a macroporosity) and the entouring finite fluid. The transport inside the solid is by molecular diffusion and outside of it the convective film resistance is included. A general expression is given which is valid for the infinite plate, for the infinite cylinder and for the sphere. The standard monopore case is obtained as a particular solution.
Das Bipor-Modell in der fest-flüssig Extraktion: Das diskontinuierliche Verfahren
Zusammenfassung Es wird die exakte analytische Lösung für den allgemeinen Fall der instationären Stoffübertragung zwischen einem Festkörper mit biporöser Struktur (bestehend aus einer Mikro- und einer Makroporosität) und dem äußeren Fluid vorgestellt. Der Transport in dem Feststoff erfolgt mittels molekularer Diffusion. Außerhalb der Feststoffpartikel wird der konvektive Filmwiderstand berücksichtigt. Eine allgemeine Formel wird angegeben, die für die unendliche Platte, für den unendlichen Zylinder und für die Kugel anwendbar ist. Die Lösung für das übliche monopore Modell ergibt sich als Sonderfall.

Nomenclature c a concentration of liquid in micropores - c b concentration of liquid in macropores - ¯c average concentration in the particle - c1 initial value of ¯c - c e concentration in liquid outside the particle - c e1 initial value ofc e - D a ,D b effective diffusivity in the micro resp. in the macro structure limit ofE for infinite time - f n form-function defined in Eqs. (20), (21) and (22) - F n function defined in Eq. (33) - f, g,h Laplace transforms ofc a * ,c b/* and ¯c* resp. - I 0 ,I 1 modified Bessel functions of the first kind, order zero and first order resp. - J 0 ,J 1 Bessel functions of the first kind, order zero and first order resp. - k c mass transfer coefficient - M p mass of the solid particles - n numerical form constant, 1 for the plate, 2 for the cylinder and 3 for the sphere - N function defined in Eq. (19) - R a radius of the microporus spheres - R b size of the particle (for the plate2R b is its thickness, for cylinder and sphere: the radius) - r radial coordinate inside the microporous sphere - r * =r/R a adimensional forrt time - t * -t/ b adimensional for time (Fourier Number) - V volume of fluid phase (exterior to solid) - x position coordinate inside the solid particle - x * =x/R b adimensional forx - =(Mpp)/(Vp) volume of fluid inside the particles divided by volume of fluid outside - y=(R b k c )/D b adimensional for the mass transfer coefficient - a mircoporosity - b microporosity - p = b + (1 b ) a total porosity of the particle - =p/b 1=(1 -b @#@) ( a / b ) adimensional parameter, characteristic for the biporous structure - p density of particle - a =R a/2 / (D a / a) characteristic (micro) time - b =R b/2 / (D b / b) characteristic (macro) time - = a / b adimensional parameter, characteristic for the biporous particle  相似文献   

18.
Let (X, ) and (Y,C) be two measurable spaces withX being a linear space. A system is determined by two functionsf(X): X X and:X×YX, a (small) positive parameter and a homogeneous Markov chain {y n } in (Y,C) which describes random perturbations. States of the system, say {x n X, n=0, 1,}, are determined by the iteration relations:x n+1 =f(x n )+(x n ,Yn+1) forn0, wherex 0 =x 0 is given. Here we study the asymptotic behavior of the solutionx n as 0 andn under various assumptions on the data. General results are applied to some problems in epidemics, genetics and demographics.Supported in part by NSF Grant DMS92-06677.Supported in part by NSF Grant DMS93-12255.  相似文献   

19.
A study is made of the steady flow over a horizontal plane of a heavy inviscid incompressible liquid which flows through the side surface of a circular cylinder which rises above the plane to height h and has a base radius ofa. The motion of the liquid is assumed to be symmetric with respect to the axis of the cylinder; the pressure p is constant (equal to the atmospheric pressure) on the free surface of the liquid. Fora/h = 1, this problem can be regarded as a problem of perturbation of the flow from a flat source by a free surface. Investigation showed that this perturbation problem is essentially nonlinear, and a solution of it in the complete region occupied by the liquid can be obtained only in variables of the boundary layer type. The problem admits linearization under the additional assumption that the parameter = Q2/(82ga3) is small; here, Q is the constant volume flow rate of the liquid per unit height of the cylinder, and g is the acceleration of free fall. For the case 1, 1 the problem is solved by the method of integral transformations. A noteworthy feature of the solution is the slow damping of the perturbations of the velocity with the depth (inversely proportional to the square of the distance from the free surface), in contrast to the similar problem of the wave motions of a heavy liquid, for which the velocity perturbations are damped exponentially.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–7, March–April, 1984.  相似文献   

20.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号