首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N‐Demethylation of tropine is an important step in the degradation of this compound and related metabolites. With the purpose of understanding the reaction mechanism(s) involved, it is desirable to measure the 15N kinetic isotope effects (KIEs), which can be accessed through the 15N isotope shift (Δδ15N) during the reaction. To measure the isotope fractionation in 15N during tropine degradation necessitates the extraction of the residual substrate from dilute aqueous solution without introducing artefactual isotope fractionation. Three protocols have been compared for the extraction and measurement of the 15N/14N ratio of tropine from aqueous medium, involving liquid‐liquid phase partitioning or silica‐C18 solid‐phase extraction. Quantification was by gas chromatography (GC) on the recovered organic phase and δ15N values were obtained by isotope ratio measurement mass spectrometry (irm‐MS). Although all the protocols used can provide satisfactory data and both irm‐EA‐MS and irm‐GC‐MS can be used to obtain the δ15N values, the most convenient method is liquid‐liquid extraction from a reduced aqueous volume combined with irm‐GC‐MS. The protocols are applied to the measurement of 15N isotope shifts during growth of a Pseudomonas strain that uses tropane alkaloids as sole source of carbon and nitrogen. The accuracy of the determination of the 15N/14N ratio is sufficient to be used for the determination of 15N‐KIEs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Bottled and packaged waters are an increasingly significant component of the human diet. These products are regulated at the regional, national, and international levels, and determining the authenticity of marketing and labeling claims represents a challenge to regulatory agencies. Here, we present a dataset of stable isotope ratios for bottled waters sampled worldwide, and consider potential applications of such data for regulatory, forensic and geochemical standardization applications. The hydrogen and oxygen isotope ratios of 234 samples of bottled water range from -147 per thousand to +15 per thousand and from -19.1 per thousand to +3.0 per thousand, respectively. These values fall within and span most of the normal range for meteoric waters, indicating that these commercially available products represent a source of waters for use as laboratory working standards in applications requiring standardization over a large range of isotope ratios. The measured values of bottled water samples cluster along the global meteoric water line, suggesting that bottled water isotope ratios preserve information about the water sources from which they were derived. Using the dataset, we demonstrate how bottled water isotope ratios provide evidence for substantial evaporative enrichment of water sources prior to bottling and for the marketing of waters derived from mountain and lowland sources under the same name. Comparison of bottled water isotope ratios with natural environmental water isotope ratios demonstrates that on average the isotopic composition of bottled water tends to be similar to the composition of naturally available local water sources, suggesting that in many cases bottled water need not be considered as an isotopically distinct component of the human diet. Our findings suggest that stable isotope ratios of bottled water have the power to distinguish ultimate (e.g., recharge) and proximal (e.g., reservoir) sources of bottled water and constitute a potential tool for use in the regulatory monitoring of water products.  相似文献   

3.
Several crude oil accumulations in the Pannonian Basin are trapped in uncommonly hot (>170°C) reservoirs. Their maturities range from mature to very mature on the basis of cracking parameters of their biological marker homologous series (ratio of products to reactants). A stable carbon isotopic study of these oils, poor in biological markers commonly used for correlation purposes, did not provide a reliable oil-to-oil correlation. As an alternative tool, the hydrogen isotope compositions of oil fractions separated on the basis of different polarities were measured, and hydrogen isotope type-curves were generated for a set of mature to very mature crude oil samples. This method of presenting hydrogen isotope composition of fractions as type-curves is novel. Nineteen samples (17 crude oils from SE-Hungary, 1 oil condensate and 1 artificial oil) were chosen for the present study. The aim was to examine the applicability of hydrogen isotope type-curves in oil-to-oil correlation and to test the simultaneous application of carbon and hydrogen isotope type-curves in the field of petroleum geochemistry. We have shown that, although the conventionally used co-variation plots proved to be inadequate for the correlation of these hot and mature oils, the simultaneous use of carbon and the newly introduced hydrogen isotope type-curves allows us to group and distinguish oils of different origins.  相似文献   

4.
The stable carbon isotope compositions of tetrols, erythritol and threitol were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using four tetrols with various δ13C values derivatized by methylboronic acid, the carbon isotope analysis method achieved excellent reproducibility and high accuracy. There was no carbon isotopic fractionation during the derivatization processes. The differences in the carbon isotopic compositions of methylboronates between the measured and calculated ranged from ?0.20 to 0.12‰, within the specification of the GC/C/IRMS system. It was demonstrated that δ13C values of tetrols could be calculated by a simple mass balance equation between tetrols, methylboronic acid, and methylboronates. The analogous 2‐methyltetrols, marker compounds of photooxidation products of atmospheric isoprene, should have similar behavior using the same derivatization reagent. This method may provide insight on sources and sinks of atmospheric isoprene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We present a procedure for the determination of the isotopic ratios of silicon and oxygen from the same aliquot of anhydrous silicate material. The sample is placed in a bromine pentafluoride atmosphere as it is heated with a CO2 laser system releasing silicon tetrafluoride and oxygen gasses. The oxygen gas is then purified to remove other reaction by‐products through several liquid nitrogen traps before being captured onto a molecular sieve and transferred to an isotope ratio mass spectrometer. The silicon tetrafluoride gas is then purified using a supplementary line by repeatedly freezing to ?196°C with liquid nitrogen and then thawing with an ethanol slurry at ?110°C through a series of metal and Pyrex traps. The purified gas is then condensed into a Pyrex sample tube before it is transferred to an isotope ratio mass spectrometer for silicon isotope ratio measurements. This system has silicon yields of greater than 90% for pure quartz, olivine, and garnet standards and has a reproducibility of ±0.1‰ (2σ) for pure quartz for both oxygen and silicon isotope measurements. Meteoritic samples were also successfully analyzed to demonstrate this system's ability to measure the isotopic ratio composition of bulk powders with precision. This unique technique allows for the fluorination of planetary material without the need for wet chemistry. Though designed to analyze small aliquots of meteoritic material (1.5 to 3 mg), this approach can also be used to investigate refractory terrestrial samples where traditional fluorination is not suitable.  相似文献   

6.
Photolysis of organotin molecules RSnMe3 is shown to be a spin selective radical reaction accompanied by fractionation of magnetic, (117,119)Sn, and nonmagnetic, (118,120)Sn, isotopes between starting reagents and products. A primary photolysis process is a homolytic cleavage of the C-Sn bond and generation of a triplet radical pair as a spin-selective nanoreactor. Nuclear spin dependent triplet-singlet conversion of the pair results in the tin isotope fractionation. Experimentally detected isotope distribution unambiguously demonstrates that the classical, mass-dependent isotope effect is negligible in comparison with magnetic, spin-dependent isotope effect.  相似文献   

7.
Pineapple stored in welded and soldered can was analysed for lead to assess the extent to which it is contaminated during processing and storage. To avoid contamination during analysis the samples were prepared in clean laboratory using ultra-clean procedures. The lead concentration was determined by isotope dilution mass spectrometry and the sources of lead were identified by their isotopic signature and quantified by isotope systematics. The results showed that the lead concentration in pineapple stored in the soldered cans (ca. 150 ng g?1) was about 2.5 times that found in the welded cans and 60–80% of this lead was traced to the soldered joint using isotope systematics. The edible portion of a fresh pineapple contained < 0.85 ng g?1 lead, showing that even pineapple in welded cans may be contaminated 80 times more than the natural level.  相似文献   

8.
The in vitro metabolic profile of BAL30630, an antifungal piperazine propanol derivative, which inhibits the 1,3-beta-d-glucansynthase, was investigated by incubation with microsomes of several species and with rat hepatocytes. For the spotting of the metabolites, mixtures of BAL30630 with a stable isotope (deuterium) labeled analogue were incubated. The metabolic pattern comprises several oxidized metabolites. Based on isotope exchange experiments, their structures could be assigned to epoxide- and hydroxylated metabolites. In hepatocyte incubations, several glucuronides formed from these oxidized metabolites could be observed. From the analysis of the metabolic pattern in microsomes, products of carbamate hydrolysis were characterized. This hydrolysis was highly species dependent. In activated incubations and in rat hepatocytes, those metabolites were further oxidized. In incubations without NADPH activation, the resulting hydrolytic metabolites could be enriched without the subsequent oxidation. Final structural elucidation of the metabolites was performed using accurate mass determination and isotope exchange experiments, in which incubations were analyzed by deuterium exchange and capillary HPLC–QTof-MS and MS/MS. The use of non-radioactive, stabile isotope labeled drug analogues in combination with isotope exchange studies was essential in particular for a defined assignment of the functional groups in the structures of the investigated metabolites.  相似文献   

9.
Matrix-assisted laser desorption/ionization mass spectrometry is a powerful analytical tool for the structural characterization of oligonucleotides and nucleic acids. Here we report the application of stable isotope labeling for the simplified characterization of ribonucleic acids (RNAs). An (18)O label is incorporated at the 3'-phosphate of oligoribonucleotides during the enzymatic processing of intact RNAs. As implemented, a buffer solution containing a 50 : 50 mixture of H(2)O and (18)O-labeled H(2)O is used during endonuclease digestion. Upon digestion, characteristic doublets representative of the isotopic distribution of oxygen are noted for those products that contain 3'-phosphate groups. This approach is used to distinguish readily endonuclease digestion products from incomplete digestion products and non-specific cleavage products. In addition, RNase digestion products containing the characteristic isotopic doublet can be selected for further characterization by post-source decay (PSD) analysis. PSD products carrying the 3'-phosphate group will appear as a doublet, thereby simplifying fragment ion assignment.  相似文献   

10.
A species-specific isotope dilution technique for accurate determination of sulfur species in low- and high-boiling petroleum products was developed by coupling capillary gas chromatography with quadrupole ICP-MS (GC-ICP-IDMS). For the isotope dilution step 34S-labeled thiophene, dibenzothiophene, and mixed dibenzothiophene/4-methyldibenzothiophene spike compounds were synthesized on the milligram scale from elemental 34S-enriched sulfur. Thiophene was determined in gasoline, ‘sulfur-free’ gasoline, and naphtha. By analyzing reference material NIST SRM 2296, the accuracy of species-specific GC-ICP-IDMS was demonstrated by an excellent agreement with the certified value. The detection limit is always limited by the background noise of the isotope chromatograms and was determined for thiophene to be 7 pg absolute, which corresponds to 7 ng sulfur/g sample under the experimental conditions used. Dibenzothiophene and 4-methyldibenzothiophene were determined in different high-boiling petroleum products like gas oil, diesel fuel, and heating oil. In this case a large concentration range from about < 0.04 to more than 2,000 μg g−1 was covered for both sulfur species. By parallel GC-ICP-MS and GC-EI-MS experiments (EI-MS electron impact ionization mass spectrometry) the substantial influence of co-eluting hydrocarbons on the ICP-MS sulfur signal was demonstrated, which can significantly affect results obtained by external calibration but not those by the isotope dilution technique.  相似文献   

11.
The interest in compound-specific isotope analysis for product authenticity control and source differentiation in environmental sciences has grown rapidly during the last decade. However, the isotopic analysis of very polar analytes is a challenging task due to the lack of suitable chromatographic separation techniques which can be used coupled to isotope ratio mass spectrometry. In this work, we present the first method to measure carbon isotope compositions of the widely applied herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA) by liquid chromatography coupled to isotope ratio mass spectrometry. We demonstrate that this analysis can be carried out either in cation exchange or in reversed-phase separation modes. The reversed-phase separation yields a better performance in terms of resolution compared with the cation exchange method. The measurement of commercial glyphosate herbicide samples show its principal applicability and reveals a wide range of δ13C values between ?24 and ?34 ‰ for different manufacturers. The absolute minimum amounts required to perform a precise and accurate determination of carbon isotope compositions of glyphosate and AMPA were in the sub-microgram range. The method proposed is sensitive enough to further perform the experiments that are necessary to better understand the carbon isotope fractionation associated to the natural degradation of glyphosate into AMPA. Furthermore, it can be used for contaminant source allocation and product authenticity as well.  相似文献   

12.

Rationale

The isotope delta is calculated from the isotope ratio of a sample and the absolute isotope ratio of the zero reference point defining each stable isotope international scale (Rstd). Therefore, Rstd requires accurate determination. However, the literature contains a large number of Rstd values, and selection of different Rstd may lead to inconsistency in reporting and recalculating stable isotope results.

Methods

We reviewed Rstd used in the proprietary software provided by the manufacturers of stable isotope instruments commonly employed for analyses of stable HCNOS compositions. We compared the Rstd values and assessed the potential implications of using different Rstd and the normalization versus tank working gas standard for consistency in reporting stable isotope results.

Results

Different Rstd values are used by different manufacturers of stable isotope analytical instruments. For R(2H/1H)VSMOW two different but very similar values are used, 0.00015575 and 0.00015576; for R(13C/12C)VPDB three different values are used, 0.0111802, 0.0112372 and 0.01118028; and for R(15N/14N)Air-N2 two values, 0.0036782 and 0.0036765, are used. All manufacturers are using the same value for R(18O/16O)VSMOW, 0.00200520, but three different values for R(18O/16O)VPDB, 0.002067200, 0.00208835 and 0.002088349. For R(34S/32S)VCDT four different Rstd are used, 0.0441509, 0.0441626, 0.044162589 and 0.0441520597.

Conclusions

The use of different Rstd values may lead to differences in the isotope delta values obtained if the normalization versus working standard gas is applied. For the range of Rstd used in proprietary software, the potential differences are lowest for oxygen (< 0.002 ‰) and nitrogen (< 0.001 ‰), and highest for carbon (0.107 to 0.112 ‰) and sulfur (0.023 ‰). Evaluation of the existing Rstd values and recommendations for the best estimates are highly desirable to ensure worldwide consistency in stable isotope data reporting.
  相似文献   

13.
In this study we used an isotope label, generated in situ, to investigate intramolecular proton migration or scrambling during formation of [b(2)+17+Li](+) products by collision-induced dissociation (CID) of Li(+)-cationized tripeptides. To generate the isotope label, we used a McLafferty-type rearrangement of N-terminally acetylated, C-terminal peptide tert-butyl esters in which all amide positions were exchanged with deuterium. Using a set of small, model peptides, we show that intramolecular proton scrambling occurs during CID, particularly amongst adjacent sites along a peptide backbone, on the time scales employed for low-energy collisional activation in an ion-trap mass spectrometer.  相似文献   

14.
The cycloadditions of cyclopentadiene with diphenylketene and dichloroketene are studied by a combination of kinetic and product studies, kinetic isotope effects, standard theoretical calculations, and trajectory calculations. In contrast to recent reports, the reaction of cyclopentadiene with diphenylketene affords both [4 + 2] and [2 + 2] cycloadducts directly. This is surprising, since there is only one low-energy transition structure for adduct formation in mPW1K calculations, but quasiclassical trajectories started from this single transition structure afford both [4 + 2] and [2 + 2] products. The dichloroketene reaction is finely balanced between [4 + 2] and [2 + 2] cycloaddition modes in mPW1K calculations, as the minimum-energy path (MEP) leads to different products depending on the basis set. The MEP is misleading in predicting a single product, as trajectory studies for the dichloroketene reaction predict that both [4 + 2] and [2 + 2] products should be formed. The periselectivity does not reflect transition state orbital interactions. The (13)C isotope effects for the dichloroketene reaction are well-predicted from the mPW1K/6-31+G** transition structure. However, the isotope effects for the diphenylketene reaction are not predictable from the cycloaddition transition structure and transition state theory. The isotope effects also appear inconsistent with kinetic observations, but the trajectory studies evince that nonstatistical recrossing can reconcile the apparently contradictory observations. B3LYP calculations predict a shallow intermediate on the energy surface, but trajectory studies suggest that the differing B3LYP and mPW1K surfaces do not result in qualitatively differing mechanisms. Overall, an understanding of the products, rates, selectivities, isotope effects, and mechanism in these reactions requires the explicit consideration of dynamic trajectories.  相似文献   

15.
Photolysis of (17,18)O-labeled water in the presence of molecular oxygen is accompanied by transfer of (17)O and (18)O isotopes from water to oxygen, demonstrating that photoinduced oxidation of water does occur. The reaction exhibits the following isotope effect: oxidation of H(2)(17)O is faster by 2.6% (in the Earth's magnetic field) and by 6.0% (in the field 0.5 T) than that of H(2)(18)O. The effect is supposed to arise in the two spin-selective, isotope-sorting reactions-recombination and disproportionation-in the pairs of encountering HO(2) radicals. The former is spin allowed from the singlet state; the latter occurs only in the triplet one. Nuclear spin sorting produced by these reactions proceeds in opposite directions with the dominating contribution of recombination, which provides observable (17)O/(18)O isotope fractionation in favor of magnetic isotope (17)O. Neither isotope exchange nor the reaction itself occurs in the dark.  相似文献   

16.
Tyrosine hydroxylase (TyrH) is a mononuclear, non-heme iron monooxygenase that catalyzes the pterin-dependent hydroxylation of tyrosine to dihydroxyphenylalanine. When 4-methylphenylalanine is used as a substrate for TyrH, 4-hydroxymethylphenylalanine is one of the amino acid products. To examine the mechanism of benzylic hydroxylation, the products and their isotopic compositions were determined with 4-methylphenylalanines containing a mono-, di-, or trideuterated methyl group as substrates. Intrinsic primary and secondary deuterium isotope effects for benzylic hydroxylation of 9.6 +/- 0.9 and 1.21 +/- 0.08, respectively, were derived from the data. The magnitudes of these isotope effects are consistent with quantum mechanical tunneling of the hydrogen. The similarity of the effects to those seen for benzylic hydroxylation by other enzymes supports a mechanism where a high valence iron-oxo species, Fe(IV)=O, is the hydroxylating intermediate.  相似文献   

17.
Evaporation is one of the key attenuation processes for near‐surface volatile organic compounds (VOCs) in the upper soil zone. Evaporation experiments were performed to investigate the carbon isotope fractionation of benzene and toluene during progressive and non‐equilibrium evaporation at room temperature. Considerable carbon isotope fractionation occurred during evaporative enrichment of benzene and toluene. The carbon isotope compositions of residual compounds increased exponentially with increasing evaporation. Thus, the remaining liquids become isotopically heavier, and the process follows a Rayleigh trend. This result is compatible with the direction of isotopic changes associated with both microbial degradation and volatilization of hydrocarbons previously observed in soil columns, but shows exactly the opposite behavior to previous equilibrium volatilization findings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A new analytical method is presented for the compound-specific carbon and nitrogen isotope ratio analysis of a thermo-labile nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by gas chromatograph coupled to an isotope ratio mass spectrometer (GC-IRMS). Two main approaches were used to minimise thermal decomposition of the compound during gas chromatographic separation: programmed temperature vaporisation (PTV) as an injection technique and a high-temperature ramp rate during the GC run. δ15N and δ13C values of RDX measured by GC-IRMS and elemental analyser (EA)-IRMS were in good agreement within a standard deviation of 0.3‰ and 0.4‰ for nitrogen and carbon, respectively. Application of the method for the isotope analysis of RDX during alkaline hydrolysis at 50°C revealed isotope fractionation factors ε carbon?=??7.8‰ and ε nitrogen?=??5.3‰.  相似文献   

19.
Multistep hydrogen isotope exchange reactions, such as the íonization of a carbon acid via a carbanion intermediate in a protic solvent, when conducted using an isotopic tracer to monitor the exchange, have the unusual feature that their rate-determining steps always refer to the transfer of the tracer isotope and never to the isotope present in macroscopic amounts. This property of these reactions is discussed and rationalized using a free energy versus reaction coordinate diagram. It is further shown that this property does not invalidate a commonly used method of measuring kinetic isotope effects on carbon acid ionization in which rates of incorporation of tritium tracers into RH and RD substrates are compared, despite the fact that tritium transfer is rate determining in both exchanges, but it is valid only if initial rate measurements are used. When the comparison is made in a protio solvent, e.g., H2O, the portion of the initial reaction which may be used depends strongly on the magnitude of the isotope effect. It ranges from less than 1% tritium incorporation for large isotope effects to 10% or more for isotope effects near unity. On the other hand, when a deuterated solvent, e.g., D2O, is used, the range of validity of the method for large isotope effects is extended dramatically.  相似文献   

20.
Mummified fossil wood was studied using off-line pyrolysis-gas chromatography/mass spectrometry to reveal detailed insights into the pyrolysis conditions that are needed to obtain simultaneously sufficient amounts of both cellulose and lignin markers for stable carbon isotope analyses. The off-line pyrolysis was applied at a range of temperatures (200, 250 and 300 degrees C) and times (1 and 2 h) to determine the optimum temperature and time that yielded the highest quantity of true markers for lignin and cellulose. Increasing the time from 1 to 2 h had no effect whereas increasing the temperature led to large differences. The products released during the low-temperature pyrolysis were mostly related to thermally labile moieties. Only at 300 degrees C were sufficient amounts of products released that represent true cellulose and lignin building blocks and which could be studied using gas chromatography/combustion isotope ratio mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号