首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the preparation of a variety of cyclobutanes via 4-exo cyclization of radicals is presented. Radical generation is carried out by electron transfer from titanocene(III) chlorides to epoxides. The reaction relies on the acceleration of the cyclization through the use of alpha,beta-unsaturated carbonyl compounds as radical traps and the thermodynamic stabilization of the cyclobutylcarbinyl radicals through conjugation. The mechanism of the transformation was investigated by a combined theoretical and experimental study. The computational results provide the crucial energetic and structural features of pertinent intermediates and transition structures. Moreover, the origins of the diastereoselectivity of the 4-exo cyclization are outlined for the first time. Catalysts for those cases where "Cp2TiCl" did not perform in a satisfactory manner have been devised. Through the introduction of tert-butyl or cyclo-hexyl substituted cyclopentadienyl ligands the longevity of the pivotal beta-titanoxy radicals is increased sufficiently enough to enable the slow but often surprisingly diastereoselective formation of the cyclobutylcarbinyl radical. The resulting transformation constitutes the first general approach to cyclobutanes using radical chemistry.  相似文献   

2.
The mechanism of titanocene mediated 3-exo cyclizations was investigated by a combined theoretical and experimental study. A gradient corrected density functional theory (DFT) method has been scaled against titanocene dichloride, the parent butenyl radical, and in bond dissociation energy (BDE) calculations. The BP86 method using density fitting, and a basis set of triple-zeta quality emerged as a highly reliable tool for studying titanocene mediated radical reactions. The computational results revealed important kinetic and thermodynamic features of cyclopropane formation. Surprisingly, the beta-titanoxy radicals, the first intermediates of our investigations, were demonstrated to possess essentially the same thermodynamic stabilization as the corresponding alkyl radicals by comparison of the calculated BDEs. In contrast to suggestions for samarium mediated reactions, the cyclization was shown to be thermodynamically favorable in agreement with earlier kinetic studies. It was established that stereoselectivity of the cyclization is governed by the stability of the intermediates and thus the trans disubstituted products are formed preferentially. The observed ratios of products are in good to excellent agreement with the DFT results. By a combination of computational and experimental results, it was also shown that for the completion of the overall cyclopropane formation the efficiency of the trapping of the cyclopropylcarbinyl radicals is decisive.  相似文献   

3.
The mechanism of catalytic 4-exo cyclizations without gem-dialkyl substitution was investigated by a comparison of cyclic voltammetry, EPR, and computational studies with previously published synthetic results. The most active catalyst is a super-unsaturated 13-electron titanocene(III) complex that is formed by supramolecular activation through hydrogen bonding. The template catalyst binds radicals via a two-point binding that is mandatory for the success of the 4-exo cyclization. The computational investigations revealed that formation of the observed trans-cyclobutane product is not possible from the most stable substrate radical. Instead, the most stable product is formed with the lowest energy of activation from a disfavored substrate in a Curtin-Hammett related scenario.  相似文献   

4.
Intramolecular cyclization of an amidyl radical onto an olefin provides an appealing method for the synthesis of lactams and other nitrogen-containing heterocycles. Here we conducted the first, systematic theoretical study on the regioselectivity in the cyclization of various types of pent-4-enamidyl radicals that carried synthetically relevant substituents. It was found that the cyclization of most of the substituted pent-4-enamidyl radicals produced the 5-exo products (gamma-lactams) almost exclusively. Marcus theory analysis showed the involvement of both the thermodynamic (stabilization of the starting double bond or the resulting radical center) and intrinsic (mainly steric effects) contributions in determining the 5-exo selectivity. Nonetheless, in two types of systems we found that the delta-lactams became the favored products through the 6-endo cyclization. In one of the systems an aromatic substituent was placed at the C4-position, whereas in the other system an electron-rich aromatic ring was incorporated into the pent-4-enamidyl radical backbone at the C2- and C3-positions. This unprecedented 6-endo mode of amidyl radical cyclization provided an interesting route for the preparation of mono- and bicyclic delta-lactams (pyridinones).  相似文献   

5.
Electron spin resonance (ESR) spectroscopy can contribute to understanding both the kinetics and mechanism of radical polymerizations. A series of oligo/poly(meth)acrylates were prepared by atom transfer radical polymerization (ATRP) and purified to provide well defined radical precursors. Model radicals, with given chain lengths, were generated by reaction of the terminal halogens with an organotin compound and the radicals were observed by ESR spectroscopy. This combination of ESR with ATRPs ability to prepare well defined radical precursors provided significant new information on the properties of radicals in radical polymerizations. ESR spectra of the model radicals generated from tert-butyl methacrylate precursors, with various chain lengths, showed clear chain length dependent changes and a possibility of differentiating between the chain lengths of observed propagating radicals by ESR. The ESR spectrum of each dimeric, trimeric, tetrameric, and pentameric tert-butyl acrylate model radicals, observed at various temperatures, provided clear experimental evidence of a 1,5-hydrogen shift.  相似文献   

6.
Redox‐active esters (RAEs) as alkyl radical precursors have been extensively developed for C?C bond formations. However, the analogous transformations of fluoroalkyl radicals from the corresponding acid or ester precursors remain challenging because of the high oxidation potential of the fluoroalkyl carboxylate anions. The newly developed N‐hydroxybenzimidoylchloride (NHBC) ester provides a general leaving group assisted strategy to generate a portfolio of fluoroalkyl radicals, and can be successfully applied in photoinduced decarboxylative hydrofluoroalkylation and heteroarylation of unactivated olefins. In addition, DFT calculations revealed that the NHBC ester proceeds by the fluorocarbon radical pathway, whereas other well‐known RAEs proceed by the nitrogen radical pathway.  相似文献   

7.
DNA damage pathways induced by low-energy electrons (LEEs) are believed to involve the formation of 2-deoxyribose radicals. These radicals, formed at the C3' and C5' positions of nucleotides, are the result of cleavage of the C-O phosphodiester bond through transfer of LEEs to the phosphate group of DNA oligomers from the nucleobases. A considerable amount of information has been obtained to illuminate the identity of the unmodified oligonucleotide products formed through this process. There exists, however, a paucity of information as to the nature of the modified lesions formed from degradation of these sugar radicals. To determine the identity of the damage products formed via the 2',3'-dideoxy-C3'-thymidinyl radical (C3'(dephos) sugar radical), phenyl selenide and acyl modified sugar and nucleoside derivatives have been synthesized, and their suitability as photochemical precursors of the radical of interest has been evaluated. Upon photochemical activation of C3'-derivatized nucleosides in the presence of the hydrogen atom donor tributyltin hydride, 2',3'-dideoxythymidine is formed indicating the selective generation of the C3'(dephos) sugar radical. These precursors will make the identification and quantification of products of DNA damage derived from radicals generated by LEEs possible.  相似文献   

8.
The use of aryloxy oxalyl chlorides (AOCs), aryloxy oxalyl tert-butyl peroxides (AOBs), and diaryl oxalates (DAOs) for unimolecular generation of phenoxyl-based radicals under solution and rigid matrix conditions is described. AOCs are usable for photochemical generation of phenoxyl radicals, but are only conveniently stable as precursors when 2,6-di-tert-butylated derivatives are used. AOBs may be used as thermal precursors to aryloxyl radicals, since they typically decompose within 2-3 h at 60-85 degrees C to give phenols. (1)H-NMR solution kinetic studies find that DeltaH() = 31 kcal/mol, and DeltaS() = +3.4 cal/mol-K for decomposition of phenoxyoxalyl tert-butyl peroxide, consistent with substantial concertedness in peroxide bond cleavage. AOBs and the more stable DAOs are also convenient photochemical phenoxyl radical precursors. AOBs yield phenoxyl radicals more readily by photolysis than do corresponding DAOs, but the DAOs have fewer side reactions that can quench the product phenoxyl radicals.  相似文献   

9.
Amides have been successfully used as precursors of imidoyl radicals for radical cyclisation. The amides have been converted to imidoyl selanides via reaction with phosgene to yield imidoyl chlorides followed by reaction with potassium phenylselanide. Imidoyl selanides were reacted with tributyltin hydride (Bu3SnH) as the radical mediator with triethylborane or AIBN as initiators to yield imidoyl radicals for cyclisation reactions. Imidoyl radicals have been cyclised onto alkenes to yield 2,3-substituted-indoles and -quinolines and also onto pyrroles and indoles to give bi- and tricyclic heteroarenes.  相似文献   

10.
Horner JH  Choi SY  Newcomb M 《Organic letters》2000,2(21):3369-3372
4-Nitrobenzenesulfenate esters were used as precursors for the generation of alkoxyl radicals under laser flash photolysis conditions. The esters were efficiently cleaved using the Nd:YAG third harmonic (355 nm) to produce alkoxyl radicals and the 4-nitrobenzenethiyl radical. Rate constants for beta-scission and 1, 5-hydrogen abstraction reactions of alkoxyl radicals were measured.  相似文献   

11.
Cascade radical cyclisation involving homolytic aromatic substitution has been used to synthesise new tetracycles. Treatment of vinyl iodide radical precursors with Me(3)Sn. radicals (from hexamethylditin) yielded intermediate vinyl radicals which undergo 5-exo cyclisation onto suitably placed nitrile groups to yield intermediate iminyl radicals. The iminyl radicals undergo aromatic homolytic substitution via 6-endo cyclisation (or 5-exo cyclisation followed by neophyl rearrangement) with loss of hydrogen (H.) in a H-abstraction step. We propose that this abstraction was facilitated by tert-butoxyl (t-BuO.) radicals from di-tert-butyl peroxide or methyl radicals, generated from breakdown of trimethylstannyl radicals (Me(3)Sn.). The biologically active alkaloids mappicine and luotonin A were synthesised using the new methodology. A novel radical conversion of nitriles to primary amides is proposed.  相似文献   

12.
This article describes the synthetic application of ketone-derived oxaziridines as alkyl radical precursors in copper-catalyzed Carbon-Carbon bond formation reactions. Experimental and computational studies indicate a free radical mechanism, where alkyl radicals are efficiently generated via cleavage of a Carbon-Carbon bond of oxaziridines. Acyclic and unstrained cyclic oxaziridines are applicable to the present radical process, allowing for the generation of various alkyl radicals with good functional group compatibility.  相似文献   

13.
The use of intramolecular homolytic substitution at the sulfur atom by aryl and vinyl radicals, as an alternative to the use of alkyl halides, and chalcogenides as radical precursors in organic synthesis is reviewed.  相似文献   

14.
Over the last few decades the use of radicals in synthesis has witnessed an explosive growth through introduction of efficient chain and electron-transfer reactions. Strained heterocycles, in particular, have emerged as a highly versatile and readily available class of radical precursors. The generation of carbinyl radicals of heterocycles has resulted in many elegant applications of heteroatom-centered radicals, such as beta fragmentations, cyclizations, and intramolecular hydrogen atom abstractions. Direct electron transfer to strained heterocycles has been realized through the use of arene radical anions. The method combines the virtues of radical and organometallic chemistry to yield useful functionalized organolithium compounds. Epoxides have been opened with high regioselectivity by titanocene(III) reagents in either stoichiometric or catalytic quantities to yield beta-titanoxy radicals. This development has resulted in many new applications in natural product synthesis.  相似文献   

15.
2-Propyl radicals have been generated from the photolysis of solutions of 2,2-azopropane and 2,4-dimethyl-3-pentanone in decane in a glass and a metal cell. The time course of their reactions in the presence and absence of oxygen has been monitored between 323 and 373 K. The primary process involves the formation of solvent-caged radical pairs, two 2-propyl radicals and a 2-propyl and a 2-methylpropanoyl radical from the azo and ketone precursors, respectively. Subsequently these radicals are partitioned between cage escape and dimerization and disproportionation within the cage. In oxygenated solution the free 2-propyl radicals are effectively trapped as 2-propylperoxyl radicals. However, oxygen does not react with the solvent-caged radicals. This leads to a major difference in the hydrocarbon products from the two precursors. 2,2′-Azopropane gives propane, propene, and 2,3-dimethylbutane from the start of the reaction whereas the ketone only gives propene. Following the depletion of oxygen or in the absence of oxygen, both precursors behave analogously and give all three hydrocarbons. The 2-propylperoxyl radicals undergo self-reaction and hydrogen abstraction from the solvent to give 2-propanol, propanone, and 2-propyl hydroperoxide and, under conditions of low oxygen concentration, by reaction with 2-propyl radicals they give 2,2′-dipropylperoxide. Although the two cells lead to different overall rates of reaction, the relative rates and product distributions are unaffected by the cell design. A unified mechanism is described and the known and best estimates of rate constants for the individual steps are used to simulate the time dependence of the product yields from the photolysis of both precursors. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Radical borylation using N‐heterocyclic carbene (NHC)‐BH3 complexes as boryl radical precursors has emerged as an important synthetic tool for organoboron assembly. However, the majority of reported methods are limited to reaction modes involving carbo‐ and/or hydroboration of specific alkenes and alkynes. Moreover, the generation of NHC‐boryl radicals relies principally on hydrogen atom abstraction with the aid of radical initiators. A distinct radical generation method is reported, as well as the reaction pathways of NHC‐boryl radicals enabled by photoredox catalysis. NHC‐boryl radicals are generated via a single‐electron oxidation and subsequently undergo cross‐coupling with the in‐situ‐generated radical anions to yield gem‐difluoroallylboronates. A photoredox‐catalyzed radical arylboration reaction of alkenes was achieved using cyanoarenes as arylating components from which elaborated organoborons were accessed. Mechanistic studies verified the oxidative formation of NHC‐boryl radicals through a single‐electron‐transfer pathway.  相似文献   

17.
Petrovic G  Cekovic Z 《Organic letters》2000,2(24):3769-3772
Annulation of the cyclohexane ring by a combination of free radical and ionic reactions sequences was achieved. Free radical alkylation of the remote nonactivated delta-carbon atom involves addition of delta-carbon radicals, generated by 1,5-hydrogen transfer in alkoxy radical intermediates, to radicophilic olefins, while the polar sequence involves enolate anions as intermediates which undergo a cycloalkylation reaction. Thus, the cyclohexane ring was constructed using diverse acyclic and cyclic structures as precursors of alkoxy radicals.  相似文献   

18.
We here report glycosyl sulfoxides appended with an aryl iodide moiety as readily available, air and moisture stable precursors to glycosyl radicals. These glycosyl sulfoxides could be converted to glycosyl radicals by way of a rapid and efficient intramolecular radical substitution event. The use of this type of precursors enabled the synthesis of various complex C‐linked glycoconjugates under mild conditions. This reaction could be performed in aqueous media and is amenable to the synthesis of glycopeptidomimetics and carbohydrate‐DNA conjugates.  相似文献   

19.
Density functional theory computations were done to study the 5-exo radical cyclization reactions of alpha-substituted 6,6-diphenyl-5-hexenyl radicals. The methoxy electron donor group substitution reduced the barrier to reaction by about 0.5 kcal/mol. On the other hand, the electron acceptor group substitutions (ethoxycarbonyl, carboxylic acid, carboxylate, and cyano) raised the barrier to reaction by varying amounts (0.5-2.1 kcal /mol). The entropic terms of these cyclization reactions are briefly discussed. Solvent effects on these reactions were explored by calculations that included a polarizable continuum model for the solvent. The density functional theory calculated results were found to be in good agreement with the experimental data available in the literature and help to explain some of the observed variation in these types of cyclization reactions with various substitutions. Our results also provide an explanation for why the rate constant for the carboxylate group substituted radical was found to be an order of magnitude smaller than the rate constant for those radicals with carboxylic acid and ethoxycarbonyl substitutions.  相似文献   

20.
Phosphorohydrazidates have been shown to work as radical precursors by iron-catalyzed aerobic oxidation to generate corresponding phosphonyl radicals. Generated radicals cause intermolecular addition to various alkenes in the presence of molecular oxygen to give β-hydroxyphosphonate compounds in good yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号