首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic adsorption on amorphous aluminum and iron oxides was investigated as a function of solution pH, solution ionic strength, and redox state. In this study in situ Raman and Fourier transform infrared (FTIR) spectroscopic methods were combined with sorption techniques, electrophoretic mobility measurements, and surface complexation modeling to study the interaction of As(III) and As(V) with amorphous oxide surfaces. The speciation of As(III) and As(V) in aqueous solution was examined using Raman and attenuated total reflectance (ATR)-FTIR methods as a function of solution pH. The position of the As-O stretching bands, for both As(III) and As(V), are strongly pH dependent. Assignment of the observed As-O bands and their shift in position with pH was confirmed using semiempirical molecular orbital calculations. Similar pH-dependent frequency shifts are observed in the vibrational bands of As species sorbed on amorphous Al and Fe oxides. The mechanisms of As sorption to these surfaces based on the spectroscopic, sorption, and electrophoretic mobility measurements are as follows: arsenate forms inner-sphere surface complexes on both amorphous Al and Fe oxide while arsenite forms both inner- and outer-sphere surface complexes on amorphous Fe oxide and outer-sphere surface complexes on amorphous Al oxide. These surface configurations were used to constrain the input parameters of the surface complexation models. Inclusion of microscopic and macroscopic experimental results is a powerful technique that maximizes chemical significance of the modeling approach. Copyright 2001 Academic Press.  相似文献   

2.
Multi-component Al-Fe hydr(oxides) are ubiquituous in soil and aquatic environments, where they exhibit biogeochemical controls on nutrients and contaminants. Although, sorption on single-component Al and Fe hydr(oxides) have been extensively studied, limited studies have been done on their multi-component counterparts. In this study, effects of Al/Fe content on the kinetics and energetics of phosphate sorption in a poorly-crystalline co-precipitated mixed Al-Fe hydr(oxide) system were investigated using a combination of traditional batch techniques and flow adsorption calorimetry. Differences in Al/Fe content was found to influence the structural development and anion exchange capacity of the hydr(oxides) and subsequently their phosphate sorption characteristics. Higher structural development decreased phosphate sorption, while higher AEC was associated with increased phosphate sorption, initial sorption rate, and smaller losses in sorption with increasing pH. Results from flow adsorption calorimetry indicated that at pH 4.8 phosphate sorption: (i) occurred irreversibly on anion exchange sites, with a loss of 1.9 moles of AEC per mole of phosphate sorbed, and (ii) was exothermic, with molar heats of adsorption between -25 and -39 kJmol(-1). Molar heats of adsorption were ten times that for anion exchange and independent of hydr(oxide) composition with the amount of energy evolved being directly proportional to the quantity of phosphate sorbed.  相似文献   

3.
Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater.  相似文献   

4.
Hydrous amorphous Al (HAO), Fe (HFO), and Mn (HMO) oxides are ubiquitous in the subsurface as both discrete particles and coatings and exhibit a high affinity for heavy metal contaminants. To assess risks associated with heavy metals, such as Pb, to the surrounding environment and manage remedial activities requires accurate mechanistic models with well-defined transport parameters that represent sorption processes. Experiments were conducted to evaluate Pb sorption to microporous Al, Fe, and Mn oxides, as well as to montmorillonite and HAO-coated montmorillonite. Intraparticle diffusion, a natural attenuating process, was observed to be the rate-limiting mechanism in the sorption process, where best-fit surface diffusivities ranged from 10(-18) to 10(-15) cm(2) s(-1). Specifically, diffusivities of Pb sorption to discrete aluminum oxide, aluminum oxide-coated montmorillonite, and montmorillonite indicated substrate surface characteristics influence metal mobility where diffusivity increased as affinity decreased. Furthermore, the diffusivity for aluminum oxide-coated montmorillonite was consistent with the concentrations of the individual minerals present and their associated particle size distributions. These results suggest that diffusivities for other coated systems can be predicted, and that oxide coatings and montmorillonite are effective sinks for heavy metal ions.  相似文献   

5.
Zn(II) sorption onto Al and Si oxides was studied as a function of pH (5.1-7.52), sorption density, and ionic strength. This study was carried out to determine the role of the various reaction conditions and sorbent phases in Zn complexation at oxide surfaces. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the Zn atomic environment at the metal oxide/aqueous interface. For both amorphous silica and high-surface-area gibbsite, Zn sorption kinetics were rapid and reached completion within 24 h. In contrast, Zn sorption on low-surface-area-gibbsite was much slower, taking nearly 800 h for a sorption plateau to be reached. In the case of silica, EXAFS revealed that Zn was in octahedral coordination with first-shell oxygen atoms up to a surface loading of approximately 1 micro molm(-2), changing to tetrahedral coordination as surface loading and pH increased. For the high-surface-area gibbsite system, the Znz.sbnd;O first-shell distance was intermediate between values for tetrahedral and octahedral coordination over all loading levels. Zn formed inner-sphere adsorption complexes on both silica and high-surface-area gibbsite over all reaction conditions. For Zn sorption on low-surface-area gibbsite, formation of Znz.sbnd;Al layered double hydroxide (LDH) occurred and was the cause for the observed slow Zn sorption kinetics. The highest pH sample (7.51) in the Zn-amorphous silica system resulted in the formation of an amorphous Zn(OH)(2) precipitate with tetrahedral coordination between Zn and O. Aging the reaction samples did not alter the Zn complex in any of the systems. The results of this study indicate the variability of Zn complexation at surfaces prevalent in soil and aquatic systems and the importance of combining macroscopic observations with methods capable of determining metal complex formation mechanisms.  相似文献   

6.
Intraparticle surface diffusion is an important and rate-limiting process in the sorption of metal ions to microporous sorbents such as those of hydrous amorphous Al (HAO), Fe (HFO), and Mn (HMO) oxides; these minerals are abundant in the environment, exhibiting a high affinity for metal contaminants. In aquatic systems representative of natural environments, internal micropore surfaces of HAO, HFO, and HMO can account for 40 to 90% of the sorption sites. Surface diffusivities have been observed to range between 10(-16) and 10(-10) cm2 s(-1) for metals including Sr, Cd, Zn, and Ni. The combination of significant microporosity and small diffusivities results in the amorphous oxides acting as natural attenuating sinks.  相似文献   

7.
A novel technique for examining metal-ion interactions at the solid-water interface is introduced. Planar oxides, flat, thin coatings of uniform thickness created on a metal support, have been constructed as useful analogs for investigating metal-solid interactions under a variety of conditions. XPS and ToF/SIMS results from sorption studies at pH 6.0 show that the sorption behavior of Pb on each phase is similar with Pb binding preferentially to the bulk gamma-Al(2)O(3). This may be due to the presence of defect sites on the bulk oxides, the preferential exposure of a specific crystallographic plane in the planar oxides, or it may be an artifact of instrumental analysis. A second study examining Pb sorption to planar gamma-Al(2)O(3) under a series of increasingly complex conditions shows that our methods are able to successfully characterize sorption complexes formed in the presence of environmentally derived complexants. Results suggest that Pb is more strongly complexed by aqueous phase organic matter than sediment-bound organic material, indicating a possible control on Pb sorption in natural environments. Overall, the use of planar oxides combined with a powerful suite of spectroscopic tools provides a promising approach to better understanding metal ion sorption to natural sediment surfaces in aquatic environments.  相似文献   

8.
In the developing countries where the cost is often a decisive factor, extensive studies were undertaken to test the most effective factors on the preparation, optimization and validation of the magnetic particles (or, more accurately, magnetizable particles) for removal of heavy metals from wastewaters. The objective of the proposed work was focused to provide promising solid-phase materials, which, are relatively in expensive and combine high surface capacity with fast efficient treatment. Four various metal oxides including hydrous ferric oxide (HFO), hydrous stannic oxide (HSO) and mixed ferric/stannic oxide (HMO), were prepared by precipitation with ammonia from metal chloride solutions. Two mixed oxides were prepared with different Sn/Fe ratios of 50% and 20%. Optimal conditions for the activation of these particles and the subsequent mixing of various metals oxides are tested together with the utility of the method to get a new composite material with developed chemical characteristics over their individual metal oxides. Factors affecting the sorption behavior of the prepared samples in basic and acid media were elucidated. The magnetic treatment procedure using the mixed oxide (50%) enables the equilibration step to be carried out rapidly mainly due to ferric oxide during the magnetization process and efficiently due to high capacity of the stannic oxide. A key factor in achieving very high uptake percentage is the reduction of non-specific binding of various heavy metals to the solid phase support. This is usually achieved by increasing the ion exchange capability, in addition to their adsorption process.  相似文献   

9.
Properties and structure of manganese oxide-coated clay   总被引:4,自引:0,他引:4  
In the environment, heavy metals are important contaminants that sorb to and accumulate in soils and sediments. Dominant minerals in the subsurface are oxides and clay, which occur as discrete particles and heterogeneous systems; these surfaces can significantly impact the mobility and bioavailability of metals through sorption. To better understand heterogeneous systems, amorphous (hydrous manganese oxide (HMO)) and crystalline manganese oxides (birnessite and pyrolusite) were coated on montmorillonite. However, the montmorillonite substrate potentially inhibited crystallization of the pyrolusite coating, and also resulted in a poorly crystalline birnessite. Mineralogy and morphology of the coated systems suggest an amorphous structure for HMO and uniform coverage for HMO and birnessite coatings; the presence of Si and Al indicates uncoated areas along intraplanar surfaces. The coating surface charge behaved similarly to that of discrete oxides and clay where the pH(znpc) of HMO- and birnessite-coated clay were 2.8 and 3.1, respectively. Surface area of the coated systems increased while the pore size distribution decreased as compared to the external surface area and pores of montmorillonite. X-ray absorption spectroscopy (XAS) revealed the local structural environment of Mn in the HMO- and birnessite-coated clay was consistent with the pure phase oxides: for HMO-coated clay 3.1 atoms of oxygen at 1.89 +/- 0.02 A in the first shell and 2.7 atoms of manganese at 2.85 +/- 0.02 in the second shell; and, for birnessite-coated clay 6 atoms of oxygen at 1.91 +/- 0.02 A in the first shell and 6 atoms of manganese at distance 2.99 +/- 0.02 A in the second shell. Overall, the surface properties suggest that the coating behaves like that of discrete oxides, an important sink for metal contaminants.  相似文献   

10.
A new family of porous inorganic solids based on nanocrystalline metal oxides is discussed. These materials, made up of 4-7 nm MgO, CaO, Al2O3, ZnO, and others, exhibit unparalleled destructive adsorption properties for acid gases, polar organics, and even chemical/biological warfare agents. These unique sorption properties are due to nanocrystal shape, polar surfaces, and high surface areas. Free-flowing powders or consolidated pellets are effective, and pore structure can be controlled by consolidation pressures. Chemical properties can be adjusted by choice of metal oxide as well as by incorporating other oxides as monolayer films.  相似文献   

11.
Pervaporative performances were investigated for dehydration of water–acetonitrile using nanocomposite metal oxide and Pervap® 2202 membranes. Poly (vinyl alcohol) based nanocomposite metal oxide membranes were prepared through co-precipitation of different amounts of Fe (II) and Fe (III). The freestanding nanocomposite metal oxide membranes were characterized by Transmission electron microscopy and X-ray diffraction. Sorption studies evaluated the extent of interaction and degree of swelling of the membranes. Fe containing PVA polymer matrix showed improved flux and selectivity. In order to observe simultaneous effect of flux and selectivity, pervaporation separation index showed 10 wt.% iron oxide containing membrane is the most amongst all tested. The diffusion coefficients were calculated using pervaporation results and sorption kinetics data. An attempt was made to predict sorption selectivity thermodynamically. PV separation factor was observed to be governed by sorption and/or diffusion phenomena and sorption selectivity was found to be higher than PV separation factor. Prediction of concentration profile in the membrane was also attempted and the results showed that water concentration in the membrane drops down with increase in membrane thickness.  相似文献   

12.
A continuous-flow sequential extraction system was used to study the distribution of Pb, and its association with other elements (Fe, Al and Ca), in soils around a Pb smelter. Soil samples were analysed by a four-step continuous-flow sequential extraction procedure employing a modified Tessier/BCR scheme. Recoveries of Pb using the flow system (88–111%) were higher than those obtained using a conventional batch extraction system. There were also some differences in Pb distribution between fractions as determined using the two extraction systems. The most abundant fraction of Pb was extracted during the dissolution of soil oxides (Fe/Al). Extractograms (plots of concentration of elements vs. extractant volume/time) indicated that anthropogenic Pb was predominantly adsorbed onto Fe oxide surfaces in contaminated soils. In soil profiles, the highest amounts of Pb were found in the topsoil surface layers (0–5?cm) of the contaminated soils with only limited movement into subsurface layers.  相似文献   

13.
We studied chemical reactions between ultrathin metal films (Al, Cr, Fe, Mo) and single-crystal oxides (SrTiO3 (100), TiO2 (110)) with X-ray photoelectron spectroscopy (XPS). The work function of the metal and the electron density in the oxide strongly influence the reaction onset temperature (T(RO)), where metal oxidation is first observed, and the rate of metal oxidation at the metal/oxide interfaces. The Fermi levels of the two contacting phases affect both the space charges formed at the interfaces and the diffusion of ionic defects across the interfaces. These processes, which determine metal oxidation kinetics at relatively low temperatures, can be understood in the framework of the Cabrera-Mott theory. The results suggest that the interfacial reactivity is tunable by modifying the Fermi level (E(F)) of both contacting phases. This effect is of great technological importance for a variety of devices with heterophase boundaries.  相似文献   

14.
This study evaluated the effectiveness of amorphous iron and aluminum mixed hydroxides in removing fluoride from aqueous solutions. A series of mixed Fe/Al samples were prepared at room temperature by co-precipitating Fe and Al mixed salt solutions at pH 7.5. The compositions (Fe:Al molar ratio) of the oxides were varied as 1:0, 3:1, 2:1, 1:1 and 0:1 and the samples were characterized by XRD, BET surface area and pHZPC. The XRD studies indicated the amorphous nature of the samples and Al(III) incorporation on Fe(III) hydroxides. Batch adsorption studies for fluoride removal on these materials showed that the adsorption capacities of the materials were highly influenced by solution pH, temperature and initial fluoride concentration. The rate of adsorption was fast and equilibrium was attained within 2 h. The adsorption followed first-order kinetics with intraparticle diffusion as the rate determining step for all the samples. The experimental data fitted well to both Langmuir and Freundlich adsorption isotherms. All samples exhibited very high Langmuir adsorption capacities; the sample with molar ratio 1 has shown maximum adsorption capacity of 91.7 mg/g. The thermodynamic parameters were determined to study the feasibility of the adsorption process.  相似文献   

15.
When ternary mixed solvents consisting of water-hydrophilic/hydrophobic organic solvents are fed into a micro-space under laminar flow conditions, the solvent molecules are radially distributed in the micro-space. The specific fluidic behavior of the solvents is called the "tube radial distribution phenomenon (TRDP)". A novel capillary chromatography method was developed based on the TRDP that creates the inner major and outer minor phases in a tube, where the outer phase acts as a pseudo-stationary phase. This is called "tube radial distribution chromatography (TRDC)". In this study, Chrome Azurol S as an absorption reagent was introduced into the TRDC system for metal ion separation and online detection. The fused-silica capillary tube (75 μm id and 110 cm length) and water-acetonitrile-ethyl acetate mixture (3:8:4 volume ratio) including 20 mM Chrome Azurol S as a carrier solution were used. Metal ions, i.e. Co(II), Cu(II), Ni(II), Al(III), and Fe(III), as models were injected into the present TRDC system. Characteristic individual absorption characteristics and elution times were obtained as the result of complex formation between the metal ions and Chrome Azurol S in the water-acetonitrile-ethyl acetate mixture solution. The elution times of the metal ions were examined based on their absorption behavior; Co(II), Ni(II), Al(III), Fe(III), and Cu(II) were eluted in this order over the elution times of 4.7-6.8 min. The elution orders were determined from the molar ratios of metal ion to Chrome Azurol S and Irving-Williams series for bivalent metal ions.  相似文献   

16.
Sorption of H(4)SiO(4) (including experiments as a function of time, K(d) measurement with different m/v ratios and sorption edges) onto different iron (hydro)oxides as goethite (alpha-FeOOH), hematite (alpha-Fe(2)O(3)), and magnetite (Fe(3)O(4)) has been studied with concentration of silicates under solubility limit. A surface complexation model has been used to account for sorption edge of silicates onto these iron oxide surfaces. It reveals that two types of surface complex namely FeH(3)SiO(4) and FeH(2)SiO(4)(-), are needed to describe properly the experimental observations.  相似文献   

17.
A mixed hydrous Fe(III)?Zr(IV) exhibits enhanced adsorption of anions in comparison to its constituent oxides. The uptake has been observed at pH 2.0, as a function of initial salt concentration and the product shows specific affinity for Cl?, SO 4 2? and PO 4 3? ions. Doping the mixed oxide with Sn(II) improves its sorption capability for halide ions, while no significant enhancement is observed in the case of polyvalent anions.  相似文献   

18.
The Co–Mg–Al mixed metal oxides were prepared by calcination of co-precipitated hydrotalcite-like precursors at various temperatures (600–800 °C), characterised with respect to chemical (AAS) and phase (XRD) composition, textural parameters (BET), form and aggregation of cobalt species (UV–vis-DRS) and their redox properties (H2-TPR, cyclic voltammetry). Moreover, the process of thermal decomposition of hydrotalcite-like materials to mixed metal oxide systems was studied by thermogravimetric method combined with the analysis of gaseous decomposition products by mass spectrometry. Calcined hydrotalcite-like materials were tested as catalysts for methanol incineration. Catalytic performance of the oxides depended on cobalt content, Mg/Al ratio and calcination temperature. The catalysts with lower cobalt content, higher Mg/Al ratio and calcined at lower temperatures (600 or 700 °C) were less effective in the process of methanol incineration. In a series of the studied catalysts, the best results, with respect to high catalytic activity and selectivity to CO2, were obtained for the mixed oxide with Co:Mg:Al molar ratio of 10:57:33 calcined at 800 °C. High activity of this catalyst was likely connected with the presence of a Co–Mg–Al spinel-type phases, containing easy reducible Co3+ cations, formed during high-temperature treatment of the hydrotalcite-like precursor.  相似文献   

19.
利用极稀悬浮液中蒙脱土的解离作用并结合柱化技术过程,制备了介孔结构的铝铁/蒙脱土复合材料(Fe-Al/mmt);并采用粉末X射线衍射、氮等温吸脱附、傅立叶红外光谱、紫外可见光漫反射光谱及苯酚催化羟基化反应表征了其结构和性能。结果显示,铁铝聚合前驱液中铁/铝比影响复合材料中蒙脱土的解离程度,且仅当低铁/铝比时(即Fe/(Fe+Al)物质的量的比介于0.05~0.3),嵌入解离的蒙脱土片层间的混合铁铝物种呈现能耐温350 ℃的热稳定性;氮等温吸脱附分析反映出这种解离的蒙脱土堆积结构呈现介孔特征,孔径分布窄,介于2.0~2.3 nm;红外分析表明材料表面具有L酸和B酸位,并且L酸位量与嵌入解离的蒙脱土结构中的混合铁铝物种相关;由于结构中混合铁铝物种的存在及相应的Si-O → Fe、Al-O → Fe间的电子跃迁,Fe-Al/mmt材料在紫外区呈现宽泛的能量吸收特征。这些结果说明,由于混合铁铝物种嵌入于解离的蒙脱土片层堆积结构中,形成了“卡片屋”式介孔结构。实验条件下,Fe/(Fe+Al)物质的量的比为0.3的Fe-Al/mmt呈现较佳的催化羟基化性能,苯酚转化率为36.7%,二酚产物选择性32.3%;并且初步表明铝掺杂后,通过铁铝比和表面酸性的调整,材料的部分选择氧化性能可以得到改善。  相似文献   

20.
Fluoride sorption and associated aluminum release in variable charge soils   总被引:9,自引:0,他引:9  
Fluoride sorption and related aluminum (Al) release are evaluated in two iron-oxide-rich soils as a function of soil depth, composition, and physical-chemical properties and potential mechanisms of fluoride-surface interaction are suggested. Measured Al concentrations at equilibrium fluoride sorption, reflective of the net balance between Al dissolution and sequestration of the released Al by the solid phase, suggest net fluoride-assisted dissolution of Al-bearing amorphous and crystalline soil minerals. Strikingly, soils of similar depth and horizonation from the same soil order but of distinct soil series exhibited markedly different susceptibility to Al loss in the presence of fluoride, possibly a combined result of differences in the mechanism of fluoride sorption, soil mineralogy, reactivity of the surficial Al and Fe, and soil solution chemistry. Fluoride sorption is strongly correlated with soil Al and Fe present as high-surface-area amorphous and crystalline oxide phases. Fluoride complexation to surficial Al and Fe ions via ligand exchange with surficial OH groups and water molecules appears to be the dominant sorption mechanism. At high dissolved fluoride concentrations (>7 mM), other mechanisms of fluoride retention including adsorption of AlF solution complexes, entrapment in the interparticle pore fluid, and precipitation into solution and/or onto the soil surface are also likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号