首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This article introduces a new method of supervised learning based on linear discrimination among the vertices of a regular simplex in Euclidean space. Each vertex represents a different category. Discrimination is phrased as a regression problem involving ?-insensitive residuals and a quadratic penalty on the coefficients of the linear predictors. The objective function can by minimized by a primal MM (majorization–minimization) algorithm that (a) relies on quadratic majorization and iteratively re-weighted least squares, (b) is simpler to program than algorithms that pass to the dual of the original optimization problem, and (c) can be accelerated by step doubling. Limited comparisons on real and simulated data suggest that the MM algorithm is competitive in statistical accuracy and computational speed with the best currently available algorithms for discriminant analysis.  相似文献   

2.
《Discrete Applied Mathematics》2004,134(1-3):303-316
M-convex functions, introduced by Murota (Adv. Math. 124 (1996) 272; Math. Prog. 83 (1998) 313), enjoy various desirable properties as “discrete convex functions.” In this paper, we propose two new polynomial-time scaling algorithms for the minimization of an M-convex function. Both algorithms apply a scaling technique to a greedy algorithm for M-convex function minimization, and run as fast as the previous minimization algorithms. We also specialize our scaling algorithms for the resource allocation problem which is a special case of M-convex function minimization.  相似文献   

3.
In this paper effectiveness of several agent strategy learning algorithms is compared in a new multi-agent Farmer–Pest learning environment. Learning is often utilized by multi-agent systems which can deal with complex problems by means of their decentralized approach. With a number of learning methods available, a need for their comparison arises. This is why we designed and implemented new multi-dimensional Farmer–Pest problem domain, which is suitable for benchmarking learning algorithms. This paper presents comparison results for reinforcement learning (SARSA) and supervised learning (Naïve Bayes, C4.5 and Ripper). These algorithms are tested on configurations with various complexity with not delayed rewards. The results show that algorithm performances depend highly on the environment configuration and various conditions favor different learning algorithms.  相似文献   

4.
Forward–backward and Douglas–Rachford splitting are methods for structured nonsmooth optimization. With the aim to use smooth optimization techniques for nonsmooth problems, the forward–backward and Douglas–Rachford envelopes where recently proposed. Under specific problem assumptions, these envelope functions have favorable smoothness and convexity properties and their stationary points coincide with the fixed-points of the underlying algorithm operators. This allows for solving such nonsmooth optimization problems by minimizing the corresponding smooth convex envelope function. In this paper, we present a general envelope function that unifies and generalizes existing ones. We provide properties of the general envelope function that sharpen corresponding known results for the special cases. We also present a new interpretation of the underlying methods as being majorization–minimization algorithms applied to their respective envelope functions.  相似文献   

5.
The sequential minimization optimization (SMO) is a simple and efficient decomposition algorithm for solving support vector machines (SVMs). In this paper, an improved working set selection and a simplified minimization step are proposed for the SMO-type decomposition method that reduces the learning time for SVM and increases the efficiency of SMO. Since the working set is selected directly according to the Karush–Kuhn–Tucker (KKT) conditions, the minimization step of subproblem is simplified, accordingly the learning time for SVM is reduced and the convergence is accelerated. Following Keerthi’s method, the convergence of the proposed algorithm is analyzed. It is proven that within a finite number of iterations, solution that is based on satisfaction of the KKT conditions will be obtained by using the improved algorithm.  相似文献   

6.
We present a simple and unified technique to establish convergence of various minimization methods. These contain the (conceptual) proximal point method, as well as implementable forms such as bundle algorithms, including the classical subgradient relaxation algorithm with divergent series.An important research work of Phil Wolfe's concerned convex minimization. This paper is dedicated to him, on the occasion of his 65th birthday, in appreciation of his creative and pioneering work.  相似文献   

7.
We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a broad class of nonconvex and nonsmooth minimization problems. Building on the powerful Kurdyka–?ojasiewicz property, we derive a self-contained convergence analysis framework and establish that each bounded sequence generated by PALM globally converges to a critical point. Our approach allows to analyze various classes of nonconvex-nonsmooth problems and related nonconvex proximal forward–backward algorithms with semi-algebraic problem’s data, the later property being shared by many functions arising in a wide variety of fundamental applications. A by-product of our framework also shows that our results are new even in the convex setting. As an illustration of the results, we derive a new and simple globally convergent algorithm for solving the sparse nonnegative matrix factorization problem.  相似文献   

8.
Evaluation for generalization performance of learning algorithms has been the main thread of machine learning theoretical research. The previous bounds describing the generalization performance of the empirical risk minimization (ERM) algorithm are usually established based on independent and identically distributed (i.i.d.) samples. In this paper we go far beyond this classical framework by establishing the generalization bounds of the ERM algorithm with uniformly ergodic Markov chain (u.e.M.c.) samples. We prove the bounds on the rate of uniform convergence/relative uniform convergence of the ERM algorithm with u.e.M.c. samples, and show that the ERM algorithm with u.e.M.c. samples is consistent. The established theory underlies application of ERM type of learning algorithms.  相似文献   

9.
The majority of first-order methods for large-scale convex–concave saddle point problems and variational inequalities with monotone operators are proximal algorithms. To make such an algorithm practical, the problem’s domain should be proximal-friendly—admit a strongly convex function with easy to minimize linear perturbations. As a by-product, this domain admits a computationally cheap linear minimization oracle (LMO) capable to minimize linear forms. There are, however, important situations where a cheap LMO indeed is available, but the problem domain is not proximal-friendly, which motivates search for algorithms based solely on LMO. For smooth convex minimization, there exists a classical algorithm using LMO—conditional gradient. In contrast, known to us similar techniques for other problems with convex structure (nonsmooth convex minimization, convex–concave saddle point problems, even as simple as bilinear ones, and variational inequalities with monotone operators, even as simple as affine) are quite recent and utilize common approach based on Fenchel-type representations of the associated objectives/vector fields. The goal of this paper was to develop alternative (and seemingly much simpler) decomposition techniques based on LMO for bilinear saddle point problems and for variational inequalities with affine monotone operators.  相似文献   

10.
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped data and can be estimated by likelihood maximization through the Expectation–Maximization algorithm. A suitable number of components is then determined conventionally by comparing different mixture models using penalized log-likelihood criteria such as Bayesian information criterion. We propose fitting MLMMs with variational methods, which can perform parameter estimation and model selection simultaneously. We describe a variational approximation for MLMMs where the variational lower bound is in closed form, allowing for fast evaluation and develop a novel variational greedy algorithm for model selection and learning of the mixture components. This approach handles algorithm initialization and returns a plausible number of mixture components automatically. In cases of weak identifiability of certain model parameters, we use hierarchical centering to reparameterize the model and show empirically that there is a gain in efficiency in variational algorithms similar to that in Markov chain Monte Carlo (MCMC) algorithms. Related to this, we prove that the approximate rate of convergence of variational algorithms by Gaussian approximation is equal to that of the corresponding Gibbs sampler, which suggests that reparameterizations can lead to improved convergence in variational algorithms just as in MCMC algorithms. Supplementary materials for the article are available online.  相似文献   

11.
Strong convergence theorem of viscosity approximation methods for nonexpansive mapping have been studied. We also know that CQ algorithm for solving the split feasibility problem (SFP) has a weak convergence result. In this paper, we use viscosity approximation methods and some related knowledge to solve a class of generalized SFP’s with monotone variational inequalities in Hilbert space. We propose some iterative algorithms based on viscosity approximation methods and get strong convergence theorems. As applications, we can use algorithms we proposed for solving split variational inequality problems (SVIP), split constrained convex minimization problems and some related problems in Hilbert space.  相似文献   

12.
In this paper, we study the backward–forward algorithm as a splitting method to solve structured monotone inclusions, and convex minimization problems in Hilbert spaces. It has a natural link with the forward–backward algorithm and has the same computational complexity, since it involves the same basic blocks, but organized differently. Surprisingly enough, this kind of iteration arises when studying the time discretization of the regularized Newton method for maximally monotone operators. First, we show that these two methods enjoy remarkable involutive relations, which go far beyond the evident inversion of the order in which the forward and backward steps are applied. Next, we establish several convergence properties for both methods, some of which were unknown even for the forward–backward algorithm. This brings further insight into this well-known scheme. Finally, we specialize our results to structured convex minimization problems, the gradient-projection algorithms, and give a numerical illustration of theoretical interest.  相似文献   

13.
AbstractAn interior trust-region-based algorithm for linearly constrained minimization problems is proposed and analyzed. This algorithm is similar to trust region algorithms for unconstrained minimization: a trust region subproblem on a subspace is solved in each iteration. We establish that the proposed algorithm has convergence properties analogous to those of the trust region algorithms for unconstrained minimization. Namely, every limit point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions and at least one limit point satisfies second order necessary optimality conditions. In addition, if one limit point is a strong local minimizer and the Hessian is Lipschitz continuous in a neighborhood of that point, then the generated sequence converges globally to that point in the rate of at least 2-step quadratic. We are mainly concerned with the theoretical properties of the algorithm in this paper. Implementation issues and adaptation to large-scale problems will be addressed in a  相似文献   

14.
In this paper, we modify a Multi-Objective Evolutionary Algorithm, known as Nondominated sorting Genetic Algorithm-II (NSGA-II) for a parallel machine scheduling problem with three objectives. The objectives are – (1) minimization of total cost due tardiness, (2) minimization of the deterioration cost and (3) minimization of makespan. The formulated problem has been solved by three Multi-Objective Evolutionary Algorithms which are: (1) the original NSGA-II (Non-dominated Sorting Genetic Algorithm–II), (2) SPEA2 (Strength Pareto Evolutionary Algorithm-2) and (3) a modified version of NSGA-II as proposed in this paper. A new mutation algorithm has also been proposed depending on the type of problem and embedded in the modified NSGA-II. The results of the three algorithms have been compared and conclusions have been drawn. The modified NSGA-II is observed to perform better than the original NSGA-II. Besides, the proposed mutation algorithm also works effectively, as evident from the experimental results.  相似文献   

15.
《Optimization》2012,61(8):1173-1197
We consider a class of derivative-free descent methods for solving the second-order cone complementarity problem (SOCCP). The algorithm is based on the Fischer–Burmeister (FB) unconstrained minimization reformulation of the SOCCP, and utilizes a convex combination of the negative partial gradients of the FB merit function ψFB as the search direction. We establish the global convergence results of the algorithm under monotonicity and the uniform Jordan P-property, and show that under strong monotonicity the merit function value sequence generated converges at a linear rate to zero. Particularly, the rate of convergence is dependent on the structure of second-order cones. Numerical comparisons are also made with the limited BFGS method used by Chen and Tseng (An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Program. 104(2005), pp. 293–327), which confirm the theoretical results and the effectiveness of the algorithm.  相似文献   

16.
Total variation regularization introduced by Rudin, Osher, and Fatemi (ROF) is widely used in image denoising problems for its capability to preserve repetitive textures and details of images. Many efforts have been devoted to obtain efficient gradient descent schemes for dual minimization of ROF model, such as Chambolle’s algorithm or gradient projection (GP) algorithm. In this paper, we propose a general gradient descent algorithm with a shrinking factor. Both Chambolle’s and GP algorithm can be regarded as the special cases of the proposed methods with special parameters. Global convergence analysis of the new algorithms with various step lengths and shrinking factors are present. Numerical results demonstrate their competitiveness in computational efficiency and reconstruction quality with some existing classic algorithms on a set of gray scale images.  相似文献   

17.
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.  相似文献   

18.
A constrained minimax problem is converted to minimization of a sequence of unconstrained and continuously differentiable functions in a manner similar to Morrison's method for constrained optimization. One can thus apply any efficient gradient minimization technique to do the unconstrained minimization at each step of the sequence. Based on this approach, two algorithms are proposed, where the first one is simpler to program, and the second one is faster in general. To show the efficiency of the algorithms even for unconstrained problems, examples are taken to compare the two algorithms with recent methods in the literature. It is found that the second algorithm converges faster with respect to the other methods. Several constrained examples are also tried and the results are presented.  相似文献   

19.
We propose a multi-time scale quasi-Newton based smoothed functional (QN-SF) algorithm for stochastic optimization both with and without inequality constraints. The algorithm combines the smoothed functional (SF) scheme for estimating the gradient with the quasi-Newton method to solve the optimization problem. Newton algorithms typically update the Hessian at each instant and subsequently (a) project them to the space of positive definite and symmetric matrices, and (b) invert the projected Hessian. The latter operation is computationally expensive. In order to save computational effort, we propose in this paper a quasi-Newton SF (QN-SF) algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule. In Bhatnagar (ACM TModel Comput S. 18(1): 27–62, 2007), a Jacobi variant of Newton SF (JN-SF) was proposed and implemented to save computational effort. We compare our QN-SF algorithm with gradient SF (G-SF) and JN-SF algorithms on two different problems – first on a simple stochastic function minimization problem and the other on a problem of optimal routing in a queueing network. We observe from the experiments that the QN-SF algorithm performs significantly better than both G-SF and JN-SF algorithms on both the problem settings. Next we extend the QN-SF algorithm to the case of constrained optimization. In this case too, the QN-SF algorithm performs much better than the JN-SF algorithm. Finally we present the proof of convergence for the QN-SF algorithm in both unconstrained and constrained settings.  相似文献   

20.
《Optimization》2012,61(3):185-217
Two switching algorithms QNSWl and QNSW2 are proposed in this paper. These algorithms are developed based on the eigenvalues of matrices which are inertial to the symmetric rank-one (SR1) updates and the BFGS updates. First, theoretical results on the eigenvalues and condition numbers of these matrices are presented. Second, switch-ing mechanisms are then developed based on theoretical results obtained so that each proposed algorithm has the capability of applying appropriate updating formulae at each iterative point during the whole minimization process. Third, the performance of

each of the proposed algorithms is evaluated over a wide range of test problems with variable dimensions. These results are then compared to the results obtained by some well-known minimization packages. Comparative results show that among the tested methods, the QNSW2 algorithm has the best overall performance for the problems examined. In some cases, the number of iterations and the number function/gradient calls required by certain existing methods are more than a four-fold increase over that required by the proposed switching algorithms  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号