首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indigofera linifolia is a medicinally important plant, and by virtue of its rich phytochemical composition, this plant is widely used as essential component in traditional medication systems. Due to its wide range of medicinal applications, the extract-loaded chitosan (Ext+Ch), extract-loaded PEG (Ext+PEG), and extract-loaded locust bean gum (Ext+LGB) nanoparticles (NPs) were prepared in the present study. The prepared NPs were then evaluated for their antibacterial, antioxidant, and antidiabetic potentials. Antibacterial activities of the crude extract and the synthesized NPs were performed following standard procedures reported in the literature. The antioxidant capabilities of extract and NPs were evaluated using DPPH free radical scavenging assay. The antidiabetic potential of the samples was evaluated against α-amylase and α-glucosidase. Ext+PEG NPs showed more potent antibacterial activity against the selected strains of bacteria with the highest activity against Escherichia coli. The lowest antibacterial potential was observed for Ext+LGB NPs. The Ext+LGB NPs IC50 value of 39 μg/mL was found to be the most potent inhibitor of DPPH free radicals. Ext+LGB NPs showed a greater extent of inhibition against α-glucosidase and α-amylase with an IC50 of 83 and 78 μg/mL, whereas for the standard acarbose the IC50 values recorded against the mentioned enzymes were 69 and 74 μg/mL, respectively. A high concentration of phenolics and flavonoids in the crude extract was confirmed through TPC and TFC tests, HPLC profiling, and GC–MS analysis. It was considered that the observed antibacterial, antidiabetic, and antioxidant potential might be due the presence of these phenolics and flavonoids detected. The plant could thus be considered as a potential candidate to be used as a remedy of the mentioned health complications. However, further research in this regard is needed to isolate the exact responsible compounds of the observed biological potentials exhibited by the crude extract. Further, toxicity and pharmacological evaluations in animal models are also needed to establish the safety or toxicity profile of the plant.  相似文献   

2.
Natural origin molecules represent reliable and excellent sources to overcome some medicinal problems. The study of anticancer, anticoagulant, and antimicrobial activities of Thevetia peruviana latex were the aim of the current research. An investigation using high-performance liquid chromatography (HPLC) revealed that the major content of the flavonoids are rutin (11.45 µg/mL), quersestin (7.15 µg/mL), naringin (5.25 µg/mL), and hisperdin (6.07 µg/mL), while phenolic had chlorogenic (12.39 µg/mL), syringenic (7.45 µg/mL), and ferulic (5.07 µg/mL) acids in latex of T. peruviana. Via 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging, the experiment demonstrated that latex had a potent antioxidant activity with the IC50 43.9 µg/mL for scavenging DPPH. Hemolysis inhibition was 58.5% at 1000 µg/mL of latex compared with 91.0% at 200 µg/mL of indomethacin as positive control. Negligible anticoagulant properties of latex were reported where the recorded time was 11.9 s of prothrombin time (PT) and 29.2 s of the activated partial thromboplastin time (APTT) at 25 µg/mL, compared with the same concentration of heparin (PT 94.6 s and APPT 117.7 s). The anticancer potential of latex was recorded against PC-3 (97.11% toxicity) and MCF-7 (96.23% toxicity) at 1000 μg/mL with IC50 48.26 μg/mL and 40.31 µg/mL, respectively. Disc diffusion assessment for antimicrobial activity recorded that the most sensitive tested microorganisms to latex were Bacillus subtilis followed by Escherichia coli, with an inhibition zone (IZ) of 31 mm with minimum inhibitory concentration (MIC) (10.2 μg/mL) and 30 mm (MIC, 12.51 μg/mL), respectively. Moreover, Candida albicans was sensitive (IZ, 28 mm) to latex, unlike black fungus (Mucor circinelloides). TEM examination exhibited ultrastructure changes in cell walls and cell membranes of Staphylococcus aureus and Pseudomonas aeruginosa treated with latex. Energy scores of the molecular docking of chlorogenic acid with E. coli DNA (7C7N), and Rutin with human prostate-specific antigen (3QUM) and breast cancer-associated protein (1JNX), result in excellent harmony with the experimental results. The outcome of research recommended that the latex is rich in constituents and considered a promising source that contributes to fighting cancer and pathogenic microorganisms.  相似文献   

3.
Herein, we represent the bio-synthesis of silver nanoparticles (Ag NPs) employing Oak gum as the green template, an efficient natural and non-toxic reductant and stabilizer based on its phytochemicals by using ultrasonic irradiation. The characterization of as-synthesized Ag NPs was performed through Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), elemental mapping, UV–Vis and X-ray diffraction (XRD). After the characterization, the synthesized Ag NPs/O. Gum was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using MeOH and BHT as reference molecules. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549, Calu6 and H358 human lung cell lines in-vitro through MTT assay. They had very low cell viability and high anti-human lung cancer activities dose-dependently against the cell lines without any cytotoxicity on the normal cell line (MRC-5). The IC50 of Ag NPs/O. Gum was found 161.25, 289.26 and 235.29 µg/mL against A549, Calu6 and H358 cell lines, respectively. Maybe significant anti-human lung cancer potentials of Ag NPs/O. Gum against common lung cancer cell lines are related to their antioxidant activities. So, these results suggest that synthesized Ag NPs/O. Gum as a chemotherapeutic nanomaterial have a suitable anticancer activity against lung cell lines.  相似文献   

4.
Eruca sativa Mill. (E. sativa) leaves recently grabbed the attention of scientific communities around the world due to its potent bioactivity. Therefore, the present study investigates the metabolite profiling of the ethanolic crude extract of E. sativa leaves using high resolution-liquid chromatography-mass spectrometry (HR-LC/MS), including antibacterial, antioxidant and anticancer potential against human colorectal carcinoma cell lines. In addition, computer-aided analysis was performed for determining the pharmacokinetic properties and toxicity prediction of the identified compounds. Our results show that E. sativa contains several bioactive compounds, such as vitamins, fatty acids, alkaloids, flavonoids, terpenoids and phenols. Furthermore, the antibacterial assay of E. sativa extract showed inhibitory effects of the tested pathogenic bacterial strains. Moreover, the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) were found to be IC50 = 66.16 μg/mL and 76.05 μg/mL, respectively. E. sativa also showed promising anticancer activity against both the colorectal cancer cells HCT-116 (IC50 = 64.91 μg/mL) and Caco-2 (IC50 = 83.98 μg/mL) in a dose/time dependent manner. The phytoconstituents identified showed promising pharmacokinetics properties, representing a valuable source for drug or nutraceutical development. These investigations will lead to the further exploration as well as development of E. sativa-based nutraceutical products.  相似文献   

5.
The current study involves the novel synthesis of Ag nanoparticles (Ag NPs) decorated biguanidine modified mesoporous silica KIT-5 following post-functionalization approach (KIT-5-bigua-Ag). The tiny Ag NPs were being stabilized over the in situ prepared biguanidine ligand. The high surface area material was characterized using advanced analytical methods like Fourier Transformed infrared (FT-IR) spectroscopy, N2-adsorption–desorption isotherm, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction study (XRD). The material was having large pore cage like structure with pore diameter of 8–10 nm. TEM study displayed the particles size of deposited Ag NPs were 10–15 nm. The KIT-5-bigua-Ag nanocomposite had a significantly high surface area of 318 m2/g (BET analysis). Towards the chemical applications of the material, we headed the three-component reaction of aldehydes, amines and alkynes (A3 coupling) with good to excellent yields (70–98%) of diverse Propargylamines. The catalyst was easily isolable and reused in 8 cycles without any leaching and considerable change in its reactivity. In addition, the KIT-5-bigua-Ag nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549 cell of human lung in-vitro conditions. In the cytotoxicity and anti-human lung studies, the nanocomposite was treated to lung cancer A549 cell line following MTT assay. The cell viability of malignant lung cell line reduced dose-dependently in the presence of KIT-5-biguanidine-Ag nanocomposite. IC50 values of the nanocomposite were observed to be 915.22 μg/mL against A549 cell line. So, these results suggest that KIT-5-bigua-Ag as a novel chemotherapeutic nanocomposite have a suitable anticancer activity against lung cell lines.  相似文献   

6.
In this study, ultrasonic-assisted cellulase extraction (UCE) was applied to extract flavonoids and polyphenols from the Nymphaea hybrid flower. The extraction conditions were optimized using the response surface method (RSM) coupled with a Box-Behnken design. The crude extract of Nymphaea hybrid (NHE) was further purified using AB-8 macroporous resins, and the purified extract (NHEP) was characterized by FTIR and HPLC. In vitro activity determination by chemical method showed that NHEP displayed strong free radical scavenging abilities against the DPPH and ABTS radicals, good reduction power, and hyaluronidase inhibition. The cell viability by CCK-8 assays showed that NHEP had no significant cytotoxicity for B16 and HaCaT cells when the concentration was below 100 μg/mL and 120 μg/mL, respectively. NHEP with a concentration of 20–160 μg/mL can more effectively reduce the ROS level in H2O2 damaged HaCaT cells compared with 10 μg/mL of VC. The 40 μg/mL of NHEP had similar activity against intracellular melanin production in the B16 melanoma cells compared with 20 μg/mL Kojic acid. Good activities of antioxidation, whitening and protective effect against H2O2-induced oxidative damage promote the potential for NHEP as a functional raw material in the field of cosmetics and medicine.  相似文献   

7.
The goal of the research was to explore a new green method used to synthesize silver nanoparticles (Ag NPs) from an aqueous extract of Trigonella incise, which serves as a reducing and stabilizing agent. The obtained results showed an 85% yield of nanoparticles by using 2:5 (v/v) of 5% plant extract with a 0.5 M solution of AgNO3. Different techniques were used to characterize the synthesized Ag NPs, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and UV–visible spectroscopy. The UV–visible spectra of green synthesized silver nanoparticles showed maximum absorption at a wavelength of 440 nm. The FT-IR studies revealed the stretching oscillation frequency of synthesized silver nanoparticles in the absorption band near 860 cm−1. Similarly, the bending and stretching oscillation frequencies of the NH function group were assigned to the band in the 3226 cm−1 and 1647 cm−1 regions. The bending vibration of C-O at 1159 cm−1 confirmed the carbonyl functional group that was also assigned to the small intensity band in the range of 2361 cm−1. The X-ray diffraction analysis of Ag NPs revealed four distinct diffraction peaks at 2θ of 38°, 45°, 65° and 78°, corresponds to (111), (200), (220) and (311) of the face-centered cubic shape. The round shape morphology of Ag NPs with a mean diameter in the range 20–80 nm was analyzed via SEM images. Furthermore, the nanoparticles showed more significant antimicrobial activity against Salmonella typhi (S. typhi) and Staphylococcus aureus (S. aureus) with an inhibition zone of 21.5 mm and 20.5 mm at 6 μg/mL concentrations, respectively, once compared to the standard reference. At concentrations of 2 µg/mL and 4 µg/mL, all of the bacterial strains showed moderate activity, with inhibition zones ranging from 11 mm to 18.5 mm. Even at high concentrations of AgNPs, S. typhi showed maximum resistance. The best antifungal activity was observed by synthesized Ag NPs against Candida albicans (C. albicans) with 21 mm zone of inhibition, as compared to a standard drug which gives 22 mm of inhibition. Therefore, we conclude that the antibacterial and antifungal activities showed satisfactory results from the synthesized Ag NPs.  相似文献   

8.
This research aims to investigate the synthesis, characterization, and evaluation of the biocompatibility and antibacterial activity of novel zinc oxide (ZnO) nanoparticles (NPs) prepared by Punica granatum peel and coffee ground extracts as the reducing and capping agents. Chemically synthesized ZnONPs were prepared using zinc acetate dihydrate and sodium hydroxide as reducing precursors. ZnONPs were characterized using an ultraviolet-visible spectrophotometer (UV-VIS), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared (FTIR) spectroscopy. Peaks of UV spectra were 300 nm for ZnONPs_PPE, 320 nm (ZnONPs_CE), 290 nm, and 440 nm (ZnONP_Chem), thereby confirming ZnONPs formation. The X-ray diffractograms revealed their hexagonal structure. TEM micrographs of the biosynthesized ZnONPs revealed their hexagonal pattern and nanorod shape for ZnONPs_Chem with particle sizes of 118.6 nm, 115.7 nm, and 111.2 nm, respectively. The FTIR analysis demonstrated the presence of proteins, carboxyl, and hydroxyl groups on ZnONPs surfaces that act as reducing and stabilizing agents. ZnONP_Chem shows the antibacterial effect on Staphylococcus aureus, Enterobacter aerogenes, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Punica peel and coffee ground extracts are effective reducing agents for green ZnONPs synthesis with a lower cytotoxic effect on Vero cells than ZnONPs_Chem with IC50 = 111, 103, and 93 μg/mL, respectively.  相似文献   

9.
The use of non-toxic synthesis of iron oxide nanoparticles (FeO NPs) by an aqueous plant extract has proven to be a viable and environmentally friendly method. Therefore, the present investigation is based on the FeO NPs synthesis by means of FeCl3·6H2O as a precursor, and the plant extract of Nephrolepis exaltata (N. exaltata) serves as a capping and reducing agent. Various techniques were used to examine the synthesized FeO NPs, such as UV-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX). The FT-IR studies were used to identify different photoactive biomolecules at 3285, 2928, 1415, 1170, and 600 cm−1 in the wavenumber range from 4000 to 400 cm−1, indicating the -OH, C-H, C-O, C-C, and M-O groups, respectively. The XRD examination exhibited crystallinity, and the average diameter of the particle was 16 nm. The spherical nature of synthesized FeO NPs was recognized by SEM images, while the elemental composition of nanoparticles was identified by an EDX spectrophotometer. The antiplasmodial activity of synthesized FeO NPs was investigated against Plasmodium parasites. The antiplasmodial property of FeO NPs was evaluated by means of parasite inhibitory concentration, which showed higher efficiency (62 ± 1.3 at 25 μg/mL) against Plasmodium parasite if compared to plant extracts and precursor. The cytotoxicity of FeO NPs was also assessed in human peripheral blood mononuclear cells (PBMCs) under in vitro conditions. The lack of toxic effects through FeO NPs keeps them more effective for use in pharmaceutical and medical applications.  相似文献   

10.
The study aims to determine the secondary metabolites of Hypericum androsaemum L. extracts by liquid chromatography-high resolution mass spectrometry (LC-HRMS), and investigate the antioxidant and cytotoxic activities of the plant. Cytotoxic activity was evaluated by MTT assay, and apoptosis induction abilities on human prostate adenocarcinoma (PC-3), and hepatocellular carcinoma (Hep G2) cell lines. Accordingly, major secondary metabolites were found as hederagenin (762 ± 70.10 μg/g) in the leaves dichloromethane (LD), herniarin (167 ± 1.50 μg/g) in fruit dichloromethane (FD), (-)-epicatechin (6538 ± 235.36 μg/g) in the leaves methanol (LM), (-)-epigallocatechin gallate (758 ± 20.46 μg/g) in the fruit methanol (FM), and caffeic acid (370 ± 8.88 μg/g) in the fruit water (FW), and (3313 ± 79.51 μg/g) in the leaves water (LW) extracts. LM exerted strong antioxidant activity in DPPH free (IC50 10.94 ± 0.08 μg/mL), and ABTS cation radicals scavenging (IC50 9.09 ± 0.05 μg/mL) activities. FM exhibited cytotoxic activity with IC50 values of 73.23 ± 3.06 µg/mL and 31.64 ± 2.75 µg/mL on PC-3 and Hep G2 cell lines, respectively. Being the richest extract in terms of quillaic acid (630 ± 18.9 μg/g), which is a well-known cytotoxic triterpenoid with proven apoptosis induction ability on different cells, FM extract showed apoptosis induction activity with 64.75% on PC-3 cells at 50 μg/mL concentration. The study provides promising results about the potential of Hypericum androsaemum on cancer prevention.  相似文献   

11.
Chemotherapy is one of the most commonly used methods of cancer disease treatment. Due to the acquisition of drug resistance and the possibility of cancer recurrence, there is an urgent need to search for new molecules that would be more effective in destroying cancer cells. In this study, 1-(benzofuran-2-yl)ethan-1-one oxime and 26 oxime ethers containing heterocyclic, alicyclic or aromatic moiety were screened for their cytotoxicity against HeLa cancer cell line. The most promising derivatives with potential antitumor activity were 2-(cyclohexylideneaminoxy)acetic acid (18) and (E)-acetophenone O-2-morpholinoethyl oxime (22), which reduced the viability of HeLa cells below 20% of control at concentrations of 100–250 μg/mL. Some oxime ethers, namely thiazole and benzothiophene derivatives (24–27), also reduced HeLa cell viability at similar concentrations but with lower efficiency. Further cytotoxicity evaluation confirmed the specific toxicity of (E)-acetophenone O-2-morpholinoethyl oxime (22) against A-549, Caco-2, and HeLa cancer cells, with an EC50 around 7 μg/mL (30 μM). The most potent and specific compound was (E)-1-(benzothiophene-2-yl)ethanone O-4-methoxybenzyl oxime (27), which was selective for Caco-2 (with EC50 116 μg/mL) and HeLa (with EC50 28 μg/mL) cells. Considering the bioavailability parameters, the tested derivatives meet the criteria for good absorption and permeation. The presented results allow us to conclude that oxime ethers deserve more scientific attention and further research on their chemotherapeutic activity.  相似文献   

12.
In vitro assays of phagocytic activity showed that the peptide Pin2[G] stimulates phagocytosis in BMDM cells from 0.15 to 1.25 μg/mL, and in RAW 264.7 cells at 0.31 μg/mL. In the same way, the peptide FA1 induced phagocytosis in BMDM cells from 1.17 to 4.69 μg/mL and in RAW 264.7 cells at 150 μg/mL. Cytokine profiles of uninfected RAW 264.7 showed that Pin2[G] increased liberation TNF (from 1.25 to 10 μg/mL) and MCP-1 (10 μg/mL), and FA1 also increased the release of TNF (from 18.75 to 75 μg/mL) but did not increase the liberation of MCP-1. In RAW 264.7 macrophages infected with Salmonella enterica serovar Typhimurium, the expression of TNF increases with Pin2[G] (1.25–10 μg/mL) or FA1 (18.75–75 μg/mL). In these cells, FA1 also increases the expression of IL-12p70, IL-10 and IFN-γ when applied at concentrations of 37.5, 75 and 150 μg/mL, respectively. On the other hand, stimulation with 1.25 and 10 μg/mL of Pin2[G] promotes the expression of MCP-1 and IL-12p70, respectively. Finally, peptides treatment did not resolve murine gastric infection, but improves their physical condition. Cytokine profiles showed that FA1 reduces IFN-γ and MCP-1 but increases IL-10, while Pin2[G] reduces IFN-γ but increases the liberation of IL-6 and IL-12p70. This data suggests a promising activity of FA1 and Pin2[G] as immunomodulators of gastric infections in S. Typhimurium.  相似文献   

13.
2,4-bis (3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (BPMT) pincer ligand was used to synthesize the new [Zn(BPMT)(NCS)2] (1) and [Zn(BPMT)(Br)2] (2) complexes by a reaction with Zn(NO3)2·6H2O in the presence of either KSCN or KBr, respectively. The structure of complex 1 has been exclusively confirmed using single crystal X-ray diffraction. In this neutral heteroleptic complex, the BPMT is a pincer chelate coordinating the Zn(II) ion via three interactions with the two pyrazole moieties and the s-triazine core. Hence, BPMT is a tridentate NNN-chelate. The coordination environment of Zn(II) is completed by two strong interactions with two terminal SCN ions via the N-atom. Hence, the Zn(II) is penta-coordinated with a distorted square pyramidal coordination geometry. Hirshfeld analysis indicated the predominance of H…H, H…C and N…H intermolecular interactions. Additionally, the S…H, S…C and S…N contacts are the most significant. The free ligand has no or weak antimicrobial, antioxidant and anticancer activities while the studied Zn(II) complexes showed interesting biological activity. Complex 1 has excellent antibacterial activity against B. subtilis (2.4 μg/mL) and P. vulgaris (4.8 μg/mL) compared to Gentamycin (4.8 μg/mL). Additionally, complex 1 (78.09 ± 4.23 µg/mL) has better antioxidant activity than 2 (365.60 ± 20.89 µg/mL). In addition, complex 1 (43.86 ± 3.12 µg/mL) and 2 (30.23 ± 1.26 µg/mL) have 8 and 12 times the anticancer activity of the free BPMT ligand (372.79 ± 13.64 µg/mL).  相似文献   

14.
L-glutaminase is an important anticancer agent that is used extensively worldwide by depriving cancer cells of L-glutamine. The marine bacterium, Halomonas meridian was isolated from the Red Sea and selected as the more active L-glutaminase-producing bacteria. L-glutaminase fermentation was optimized at 36 h, pH 8.0, 37 °C, and 3.0% NaCl, using glucose at 1.5% and soybean meal at 2%. The purified enzyme showed a specific activity of 36.08 U/mg, and the molecular weight was found to be 57 kDa by the SDS-PAGE analysis. The enzyme was highly active at pH 8.0 and 37 °C. The kinetics’ parameters of Km and Vmax were 12.2 × 10−6 M and 121.95 μmol/mL/min, respectively, which reflects a higher affinity for its substrate. The anticancer efficiency of the enzyme showed significant toxic activity toward colorectal adenocarcinoma cells; LS 174 T (IC50 7.0 μg/mL) and HCT 116 (IC50 13.2 μg/mL). A higher incidence of cell death was observed with early apoptosis in HCT 116 than in LS 174 T, whereas late apoptosis was observed in LS 174 T more than in HCT 116. Also, the L-glutaminase induction nuclear fragmentation in HCT 116 was more than that in the LS 174T cells. This is the first report on Halomonas meridiana as an L-glutaminase producer that is used as an anti-colorectal cancer agent.  相似文献   

15.
The species Cordia verbenacea DC (Boraginaceae), known as the whaling herb and camaradinha, is a perennial shrub species native to the Atlantic Forest. Its leaves are used in folk medicine as an anti-inflammatory, analgesic, antiulcerogenic and curative agent, in the form of teas or infusions for internal or topical use. The present study aimed to verify the cytotoxicity of the essential oil and the leishmanicidal and trypanocidal potential of C. verbenacea. The essential oil was characterized by GC-MS. The in vitro biological activity was determined by anti-Leishmania and anti-Trypanosoma assays. The cytotoxixity was determined using mammalian fibroblasts. The C. verbenacea species presented α-pinene (45.71%), β-caryophyllene (18.77%), tricyclo[2,2,1-(2.6)]heptane (12.56%) as their main compounds. The essential oil exhibited strong cytotoxicity at concentrations below 250 μg/mL (LC50 138.1 μg/mL) in mammalian fibroblasts. The potent anti-trypanosome and anti-promastigote activities occurred from the concentration of 62.5 μg/mL and was considered clinically relevant. The results also demonstrate that at low concentrations (<62.5 μg/mL), the essential oil of C. verbenacea managed to be lethal for these activities. This can be considered an indication of the power used in daily human consumption. Therefore, it can be concluded that the essential oil of C. verbenacea contains a compound with remarkable antiparasitic activities and requires further research.  相似文献   

16.
The bioassay-guided fractionation of a CHCl3-MeOH extract from the stems of Cissus trifoliata identified an active fraction against PC3 prostate cancer cells. The treatment for 24 h showed an 80% reduction in cell viability (p ≤ 0.05) by a WST-1 assay at a concentration of 100 μg/mL. The HPLC-QTOF-MS analysis of the fraction showed the presence of coumaric and isoferulic acids, apigenin, kaempferol, chrysoeriol, naringenin, ursolic and betulinic acids, hexadecadienoic and octadecadienoic fatty acids, and the stilbene resveratrol. The exposure of PC3 cells to resveratrol (IC25 = 23 μg/mL) for 24 h induced significant changes in 847 genes (Z-score ≥ ±2). The functional classification tool of the DAVID v6.8 platform indicates that the underlying molecular mechanisms against the proliferation of PC3 cells were associated (p ≤ 0.05) with the process of differentiation and metabolism. These findings provide experimental evidence suggesting the potential of C. trifoliata as a promising natural source of anticancer compounds.  相似文献   

17.
Chagas disease (CD) affects more than 6 million people worldwide. The available treatment is far from ideal, creating a demand for new alternative therapies. Botanical diversity provides a wide range of novel potential therapeutic scaffolds. Presently, our aim was to evaluate the mammalian host toxicity and anti-Trypanosoma cruzi activity of botanic natural products including extracts, fractions and purified compounds obtained from Brazilian flora. In this study, 36 samples of extracts and fractions and eight pure compounds obtained from seven plant species were evaluated. The fraction dichloromethane from Aureliana fasciculata var. fasciculata (AFfPD) and the crude extract of Piper tectoniifolium (PTFrE) showed promising trypanosomicidal activity. AFfPD and PTFrE presented EC50 values 10.7 ± 2.8 μg/mL and 12.85 ± 1.52 μg/mL against intracellular forms (Tulahuen strain), respectively. Additionally, both were active upon bloodstream trypomastigotes (Y strain), exhibiting EC50 2.2 ± 1.0 μg/mL and 38.8 ± 2.1 μg/mL for AFfPD and PTFrE, respectively. Importantly, AFfPD is about five-fold more potent than Benznidazole (Bz), the reference drug for CD, also reaching lower EC90 value (7.92 ± 2.2 μg/mL) as compared to Bz (23.3 ± 0.6 μg/mL). Besides, anti-parasitic effect of eight purified botanic substances was also investigated. Aurelianolide A and B (compounds 1 and 2) from A. fasciculata and compound 8 from P. tuberculatum displayed the best trypanosomicidal effect. Compounds 1, 2 and 8 showed EC50 of 4.6 ± 1.3 μM, 1.6 ± 0.4 μM and 8.1 ± 0.9 μM, respectively against intracellular forms. In addition, in silico analysis of these three biomolecules was performed to predict parameters of absorption, distribution, metabolism and excretion. The studied compounds presented similar ADMET profile as Bz, without presenting mutagenicity and hepatotoxicity aspects as predicted for Bz. Our findings indicate that these natural products have promising anti-T. cruzi effect and may represent new scaffolds for future lead optimization.  相似文献   

18.
A series of fluorinated 7-hydroxycoumarin derivatives containing an oxime ether moiety have been designed, synthesized and evaluated for their antifungal activity. All the target compounds were determined by 1H-NMR, 13C-NMR, FTIR and HR-MS spectra. The single-crystal structures of compounds 4e, 4h, 5h and 6c were further confirmed using X-ray diffraction. The antifungal activities against Botrytis cinerea (B. cinerea), Alternaria solani (A. solani), Gibberella zeae (G. zeae), Rhizoctorzia solani (R. solani), Colletotrichum orbiculare (C. orbiculare) and Alternaria alternata (A. alternata) were evaluated in vitro. The preliminary bioassays showed that some of the designed compounds displayed the promising antifungal activities against the above tested fungi. Strikingly, the target compounds 5f and 6h exhibited outstanding antifungal activity against B. cinerea at 100 μg/mL, with the corresponding inhibition rates reached 90.1 and 85.0%, which were better than the positive control Osthole (83.6%) and Azoxystrobin (46.5%). The compound 5f was identified as the promising fungicide candidate against B. cinerea with the EC50 values of 5.75 μg/mL, which was obviously better than Osthole (33.20 μg/mL) and Azoxystrobin (64.95 μg/mL). Meanwhile, the compound 5f showed remarkable antifungal activities against R. solani with the EC50 values of 28.96 μg/mL, which was better than Osthole (67.18 μg/mL) and equivalent to Azoxystrobin (21.34 μg/mL). The results provide a significant foundation for the search of novel fluorinated 7-hydroxycoumarin derivatives with good antifungal activity.  相似文献   

19.
Cancer is one of the main global health problems. In order to develop novel antitumor agents, we synthesized 3,4-dihydropyrimidine-2(1H)-one (DHPM) and 2,6-diaryl-substituted pyridine derivatives as potential antitumor structures and evaluated their cytotoxic effects against several cancer cell lines. An easy and convenient method is reported for the synthesis of these derivatives, employing cobalt ferrite (CoFe 2 O 4 @SiO 2 -SO 3 H) magnetic nanoparticles under microwave irradiation and solvent-free conditions. The structural characteristics of the prepared nanocatalyst were investigated by FTIR, XRD, SEM, and TGA techniques. In vitro cytotoxic effects of the synthesized products were assessed against the human breast adenocarcinoma cell line (MCF-7), gastric adenocarcinoma (AGS), and human embryonic kidney (HEK293) cells via MTT assay. The results indicated that compound 4r (DHPM derivative) was the most toxic molecule against the MCF-7 cell line (IC 50 of 0.17 μg/mL). Moreover, compounds 4j and 4r (DHPM derivatives) showed excellent cytotoxic activities against the AGS cell line, with an IC 50 of 4.90 and 4.97 μg/mL, respectively. Although they are pyridine derivatives, compounds 5g and 5m were more active against the MCF-7 cell line. Results showed that the candidate compounds exhibited low cytotoxicity against HEK293 cells. The kinesin Eg5 inhibitory potential of the candidate compounds was evaluated by molecular docking. The docking results showed that, among the pyridine derivatives, compound 5m had the most free energy of binding (–9.52 kcal/mol) and lowest Ki (0.105 μM), and among the pyrimidine derivatives, compound 4r had the most free energy of binding (–7.67 kcal/mol) and lowest Ki (2.39 μM). Ligand-enzyme affinity maps showed that compounds 4r and 5m had the potential to interact with the Eg5 binding site via H-bond interactions to GLU116 and GLY117 residues. The results of our study strongly suggest that DHPM and pyridine derivatives inhibit important tumorigenic features of breast and gastric cancer cells. Our results may be helpful in the further design of DHPMs and pyridine derivatives as potential anticancer agents.  相似文献   

20.
The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15–55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 μg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 μg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号