首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Herein, the synthesis and study of bifunctional coordination polymers (CPs) with both magnetic and photoluminescence properties, derived from a heterometallic environment, are reported. As a starting point, three isostructural monometallic CPs with the formula [M(μ-2ani)2]n (MII=Mn ( 1Mn ), Co ( 3Co ) and Ni ( 4Ni ); 2ani=2-aminonicotinate), crystallise as chiral 2D-layered structures stacked by means of supramolecular interactions. These compounds show high thermal stability in the solid state (above 350 °C), despite which, in aqueous solution, compound 1Mn is shown to partially transform into a novel 1D chain CP with the formula [Mn(2ani)2(μ-H2O)2]n ( 2Mn ). A study of the direct current (dc) magnetic properties of 1Mn , 3Co and 4Ni reveals a spin-canted structure derived from antisymmetric antiferromagnetic weak exchanges along the chiral network (as confirmed by DFT calculations) and magnetic anisotropy of the ions, in such a way that long-range ordering is observed with variable magnitude for the spin carriers. Moreover, compounds 3Co and 4Ni show no frequency-dependent alternating current (ac) susceptibility curves under zero dc field; this is characteristic behaviour of a glassy state that may be partially supressed for 3Co by applying an external dc field. To overcome long-range magnetic ordering, CoII ions are diluted in a diamagnetic ZnII-based matrix, which enables single-molecule magnet behaviour. Interestingly, this strategy allows a bifunctional CoxZn1−x2ani material, which is imbued with a strong photoluminescent emitting capacity, as characterised by an intense blue light followed by a green afterglow, to be obtained.  相似文献   

2.
Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual‐color GQD‐based probes and CNTs and subsequently self‐recognition between DNA probes and targets.  相似文献   

3.
本文首先利用正交试验确定了微乳液-高温法合成蓝色发光Sr2CeO4超细粉体的最佳制备条件。接着研究了最佳条件下制备的Sr2CeO4超细粉体的性能。场发射扫描电镜(FE-SEM)显示,在850 ℃、900 ℃、1 000 ℃或者更高温度下退火4 h制备的粉体的形状分别呈球状、梭状和球状,平均粒径分别在100 nm左右和1 μm以内。X射线粉末衍射数据分析表明,该超细粉体属于正交晶系。室温下的光致发光光谱显示,该粉体的激发光谱有3个激发峰,主峰分别位于262 nm、281 nm和341 nm,而其发射光谱只呈现出1个发射峰,主峰位于约470 nm。与高温固相制备方法相比,微乳液-高温法可以在较低温度下制备出超细的粉体,而且它不但在262 nm处出现了一个新的激发峰,主激发峰和发射峰的位置也分别蓝移了大约30 nm和12 nm。  相似文献   

4.
5.
Advanced functional materials incorporating well‐defined multiscale architectures are a key focus for multiple nanotechnological applications. However, strategies for developing such materials, including nanostructuring, nano‐/microcombination, hybridization, and so on, are still being developed. Here, we report a facile, scalable biomineralization process in which Micrococcus lylae bacteria are used as soft templates to synthesize 3D hierarchically structured magnetite (Fe3O4) microspheres for use as Li‐ion battery anode materials and in water treatment applications. Self‐assembled Fe3O4 microspheres with flower‐like morphologies are systematically fabricated from biomineralized 2D FeO(OH) nanoflakes at room temperature and are subsequently subjected to post‐annealing at 400 °C. In particular, because of their mesoporous properties with a hollow interior and the improved electrical conductivity resulting from the carbonized bacterial templates, the Fe3O4 microspheres obtained by calcining the FeO(OH) in Ar exhibit enhanced cycle stability and rate capability as Li‐ion battery anodes, as well as superior adsorption of organic pollutants and toxic heavy metals.  相似文献   

6.
A novel platform based incorporation of carbon quantum dots (CQDs) and zinc oxide nanoflowers (ZnO‐NFs) decorated with poly cetyltrimethylammonium bromide (CTAB) was developed as electrochemical sensor for the sensitive and selective simultaneous detection of Paracetamol (PAR) and Ciprofloxacin (CIP) in biological samples. For this, CQDs and ZnO‐NFs were first deposited on a glassy carbon electrode (GCE) and subsequently a Poly (CTAB) layer was grown onto their surfaces through electro‐polymerization. The synthesized nanostructures and the corresponding fabricated sensor were characterized by the techniques of TEM, XRD, FE‐SEM, and EDX analysis. Moreover electrochemical characterization by CV and DPV were performed to elucidate the construction process and electron transfer abilities of the CQDs/ZnO‐NFs/Poly(CTAB)/GCE. Increased sensitivity and efficiency of this sensing system was obtained due to the synergistic effects of CQDs, ZnO‐NFs and Poly (CTAB) with multi‐signal amplification. Under the optimum conditions, the DPV response of proposed sensor to PAR and CIP was linear at 0.05–30.0 μM and 0.01–30.0 μM, with the detection limit of 2.47 nM and 1.97 nM respectively. The sensor possessed high stability, reproducibility, sensitivity, and selectivity toward PAR and CIP detection, over potential interferents and presented high recovery percentage in the real sample matrices.  相似文献   

7.
采用水热法合成四硫化三钴(Co3S4)催化材料,并利用球磨和喷涂技术将其制备成对电极,结合新型无碘电解液Co2+/Co3+用于染料敏化太阳电池(dye-sensitized solar cells,简称DSCs)来研究其光电性能。测试结果显示,基于Co3S4对电极,DSCs的能量转化效率(power conversion efficiency,简称PCE)只有6.06%,远远低于Pt对电极(8.05%)。为了提高Co3S4的催化能力,采用静电纺丝技术制备碳纳米纤维(electrospun carbon nanofibers,简称ECs),结合水热法制备出不同负载量的碳纳米纤维负载四硫化三钴(Co3S4/ECs)复合催化材料用于对电极,结果表明,Co3S4/ECs的PCE最高可达(8.22±0.08)%,优于Pt对电极。  相似文献   

8.
采用水热法合成四硫化三钴(Co_3S_4)催化材料,并利用球磨和喷涂技术将其制备成对电极,结合新型无碘电解液Co~(2+)/Co~(3+)用于染料敏化太阳电池(dye-sensitized solar cells,简称DSCs)来研究其光电性能。测试结果显示,基于Co_3S_4对电极,DSCs的能量转化效率(power conversion efficiency,简称PCE)只有6.06%,远远低于Pt对电极(8.05%)。为了提高Co_3S_4的催化能力,采用静电纺丝技术制备碳纳米纤维(electrospun carbon nanofibers,简称ECs),结合水热法制备出不同负载量的碳纳米纤维负载四硫化三钴(Co_3S_4/ECs)复合催化材料用于对电极,结果表明,Co_3S_4/ECs的PCE最高可达(8.22±0.08)%,优于Pt对电极。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号