首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hao-Peng Song  Cun-Fa Gao 《Meccanica》2012,47(5):1097-1102
The interaction between a screw dislocation and an elastic semi-cylindrical inhomogeneity abutting on a rigid half-plane is investigated. Utilizing the image dislocations method, the closed form solutions of the stress fields in the matrix and the inhomogeneity region are derived. The image force acting on the dislocation is also calculated. The results were used to study the interaction between a screw dislocation and a rigid wedge inhomogeneity with an elastic circular inhomogeneity at the tip by means of conformal mapping. The results show that an unstable equilibrium point of the dislocation near the semi-cylindrical inhomogeneity is found when the inhomogeneity is softer than the matrix. Moreover, the force on the dislocation is strongly affected by the position of the dislocation and the shear modulus of the semi-circular inhomogeneity. Positive screw dislocations can reduce the SIF of the rigid wedge inhomogeneity (shielding effect) only when it located in the lower half-plane. The shielding effect increases with the increase of the shear modulu of both the matrix and the inhomogeneity and increases with the increase of the wedge angle. The shielding effect (or anti-shielding effect) reaches the maximum when the dislocation tends to the wedge inhomogeneity interface.  相似文献   

2.
We study the effect of adding discrete structural mass on the linear stability of an otherwise homogeneous cantilevered-free flexible plate immersed in uniform axial flow. The methods of Howell et al. that mixed numerical simulation with eigenvalue analysis are simply extended for the present study. An ideal two-dimensional flow is assumed wherein the rotationality of the boundary-layers is modelled by vortex elements on the solid-fluid interface and the imposition of the Kutta condition at the plate's trailing edge. The Euler-Bernoulli beam model is used for the structural dynamics. It is shown that addition of mass to the plate can be either stabilising or destabilising, depending upon the location of the added mass, and how its inclusion modifies the energy exchanges of the corresponding homogeneous structure. Our results therefore suggest a straightforward means by which the critical flow speed at which low-amplitude flutter sets in can be passively controlled in engineering applications.  相似文献   

3.
The problem of elastic wedge impact onto the free surface of an ideal incompressible liquid of infinite depth is considered. The liquid flow is two-dimensional, symmetric and potential. The side walls of the wedge are modelled as Euler beams, which are either simply supported or connected to the main structure by linear springs. The liquid flow, the deflection of wedge walls and the size of wetted region are determined simultaneously within the Wagner theory of water impact. We are concerned with the impact conditions of strong coupling between the hydrodynamic loads and the structural response. The coupling is well pronounced for elastic wedges with small deadrise angles. This is the case when the fully nonlinear models fail and approximate models based on the Wagner approach are used. In contrast to the existing approximate models, we do not use any further simplifications within the Wagner theory. Calculations of the velocity potential are reduced to analytical evaluation of the added-mass matrix. Hydrodynamic pressures are not evaluated in the present analysis. In order to estimate the maximum bending stresses, both stages when the wedge surface is partially and totally wetted are considered.Three approximate models of water impact, which are frequently used in practical computations, are examined and their predictions are tested against the present numerical solution obtained by the normal mode method within the Wagner theory. It is shown that the decoupled model of elastic wedge impact, which does not account for the beam inertia, provides a useful formula for estimating the maximum bending stress in thick wedge platings.  相似文献   

4.
利用级数展开和线性叠加原理,本文给出了一种求取弹性坝面动水压力影响系数矩阵的数值算法,该法可以适用于倾斜,带有折角的弹性坝面动力压力影响系数矩阵的求取,并可进一步应用到复杂主加水和库底情形下的计算。文中指出了该法的适应范围。  相似文献   

5.
A numerical study of a uniform flow past an elastic circular cylinder using the discrete vortex method incorporating the vortex-in-cell (VIC) technique has been undertaken. The Reynolds number is kept at 200 for all calculations and the cylinder motion is modelled by a spring–damper–mass system. The fluid motion and the structural responses are solved in an iterative way so that the interactions between the fluid and the structure can be accounted for properly. Analyses of the cylinder responses, the damping, the induced forces, the vortex shedding frequency and the vortex structure in the wake have been carried out. The results show that fluid damping is responsible for a limit-cycle oscillation behaviour even when the system natural frequency is close to the vortex-shedding frequency. Reasonable agreement with previous experimental data and computational results is obtained in the comparison of the amplitude of the limit-cycle oscillations. The results further show that the cylinder oscillations could be as large as 0·57 diameter under certain flow conditions and structural properties. Finally, it is shown that a one-degree-of-freedom structural model yields results that are only in qualitative agreement with a two-degree-of-freedom model. In other words, the streamwise oscillations also have a substantial effect on the transverse vibrations and their characteristics.  相似文献   

6.
We use the Wiener-Hopf method to obtain exact solutions of plane deformation problems for an elastic wedge whose lateral sides are stress free and which has rectilinear cracks on its axis of symmetry. In problem 1, a finite crack issues from the wedge apex edge; in problem 2, a half-infinite crack originates at a certain distance from the wedge apex edge; and in problem 3, the wedge contains an internal finite crack.  相似文献   

7.
Binary discrete method of topology optimization   总被引:1,自引:0,他引:1  
The numerical non-stability of a discrete algorithm of topology optimization can result from the inaccurate evaluation of element sensitivities. Especially, when material is added to elements, the estimation of element sensitivities is very inaccurate, even their signs are also estimated wrong. In order to overcome the problem, a new incremental sensitivity analysis formula is constructed based on the perturbation analysis of the elastic equilibrium increment equation, which can provide us a good estimate of the change of the objective function whether material is removed from or added to elements, meanwhile it can also be considered as the conventional sensitivity formula modified by a non-local element stiffness matrix. As a consequence, a binary discrete method of topology optimization is established, in which each element is assigned either a stiffness value of solid material or a small value indicating no material, and the optimization process can remove material from elements or add material to elements so as to make the objective function decrease. And a main advantage of the method is simple and no need of much mathematics, particularly interesting in engineering application.  相似文献   

8.
夏南 《力学季刊》1999,20(3):229-234
本文采用Galerkin有限元方法以全位势方程为控制方程计算了航天机三维简化模型的亚声速流动。为模拟实际流动,在后部加一尖劈形后体,并拖出一尾涡面。为局部超场 速区解的稳定,采用人工密度修正。对密度和环量进行双重迭代,得到了亚声速下三维航天机的压分分布和气动力系数。  相似文献   

9.
In this paper, a coupled MPS-modal superposition method is developed for 2D nonlinear fluid-structure interaction problems. In this method, the rigid-body and relatively small elastic deformation are coupled together, which considers the mutual effect between them. The elastic deformation of the structure is represented by a mode superposition formulation, which is more efficient compared with FEM, regardless of the size of the structure. For 2D cases, if the first three modes are chosen to represent the flexible deformation of the structure, it only results in a 6×6 matrix equation to be solved. For the fluid motion, the modified Moving Particle Semi-implicit (MPS) method, which significantly reduces the fluctuation of pressure calculation of the original MPS method, is used.Two nonlinear problems, i.e. breaking-water-dam impacting a floating beam and flexible wedge slamming into the water are simulated to demonstrate the performance of the developed method. The numerical simulations show that this coupling model is capable of providing stable results that are generally in good agreement with the available experimental data. For the highly nonlinear case with very large rigid motions, the mutual effect between elastic deformation and rigid motions could accumulate to a relatively remarkable level shown by the curves of trajectories or acceleration history of the body mass centre. This also indicates the importance of mutual effect to analyse highly nonlinear FSI problems with large rigid-body motions and relatively small flexible deformation.  相似文献   

10.
We consider a homogeneous orthotropic elastic wedge in plane stress loaded by a concentrated force at the apex. The orthotropic material is conceived of to be formed by a matrix reinforced by a triangular net of elastic fibers, so that the fiber size and the net shape determine the average elastic moduli of the composite material. It is found that maintaining fixed the amount of material used for the reinforcement, there exists a particular fiber disposal which maximizes the stiffness of the wedge. The optimal disposal is different-in-type for diverse opening-angles of the wedge. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
《Wave Motion》2002,35(2):99-106
The steady state problem of the scattering of an incident Rayleigh wave by an elastic three-quarter space (270° wedge) is considered. The problem is reduced to the numerical solution of a pair of Fredholm integral equations of the second kind. The kernels of these equations consist of elementary functions. The reflection and transmission coefficients can be computed from two independent equations, which provides a check on both the accuracy and correctness of the results. The method used can be extended to other wedge angles.  相似文献   

12.
范纪华  章定国  谌宏 《力学学报》2019,51(5):1455-1465
相比于浮动坐标系法, 绝对节点坐标法(absolute nodal coordinateformulation, ANCF)在处理柔性体非线性大变形问题上具有显著优势,ANCF将单元节点坐标定义在全局坐标系下,采用斜率矢量代替节点转角坐标, 具有常数质量阵,不存在科氏离心力等优点, 然而弹性力阵为非线性项,其求解将比较耗时且占用资源. 据此, 在弹性力求解方法中,引入弹性线方法(elastic line method, ELM),该方法将格林--拉格朗日应变张量定义在中心线上,采用曲率公式来定义弯曲应变, 转角公式来定义扭转应变.同时采用有限元法对三维柔性梁位移场进行离散,求解梁单元常数质量阵、广义刚度阵、广义力阵,进而得到单元的动力学方程, 通过转换矩阵得到三维梁的动力学方程.接着从理论上指出连续介质力学方法(continuum mechanics method,CMM)和弹性线方法在求解弹性力上的不同点, 并编制动力学仿真软件.最后分别采用连续介质力学方法和弹性线方法对柔性单摆以及履带式车辆的动力学问题进行仿真分析,结果表明:弹性线方法能在保证精度的前提下有效提高计算效率.   相似文献   

13.
采用解析方法研究了部分浸入水中的圆形悬臂柱的附连水质量分布,给出了无量纲的质量分布系数,通过对质量分布系数的数值拟合分析,附连水质量效应可最终表达为结构的等效质量密度,在振动计算中只需将浸入水中的悬臂柱密度用等效密度替代即可。采用试验方法测量了部分浸入水中的悬臂柱湿频率,简化附连水质量方法计算的湿频率结果与试验测量值吻合很好,表明本文的附连水质量简化公式可很好地描述附连水的质量效应。  相似文献   

14.
水底管道的抛石加固过程是典型的颗粒-流体耦合问题.采用DEM-SPH耦合方法模拟颗粒-流体系统,其中离散元方法(DEM)用于模拟落石,光滑粒子流体动力学方法(SPH)用于模拟流体.通过三维Voronoi切割算法生成不规则形状的多面体,并基于闵可夫斯基原理构造扩展多面体形态的落石单元.通过SPH的边界排斥力模型计算颗粒与...  相似文献   

15.
At present, it happens increasingly often that one needs to study complicated modular systems with discrete interaction between the units. If a system contains a distributed unit, then it is said to be combined. One method for studying such systems is to analyze their frequency models; in this case, it is sometimes required to calculate the Green functions of the distributed unit and study the block structures generated by a model of a system with superelements. A technique for studying such systems was developed in [1] and is called the factorized perturbation method; in foreign literature, this technique is called the Green function method (e.g., see [2]).The main idea of such methods is first to construct an equivalent system in the characteristic space that arises in the discrete macrostructure of the original system as a result of the discrete interaction between the units of the latter and then to reduce the characteristic solution to the original solution by using a simple transfer relation. A typical characteristic of structural methods is their algorithmic universality, which is independent of the special form of the discrete microstructure and requires solving a characteristic matrix equation. To obtain approximate solutions by these methods, one should approximately calculate the Green functions of the distributed units and explicitly indicate their operating frequency ranges ( see [3, 4]). The concept of structural methods is to obtain a system solution by using a priori studied elements.There are a variety of methods for studying combined modular systems. In view of this, the accuracy of the approximate solutions, which are also obtained by numerous methods, should be estimated from the algorithmic standpoint. At present, this is done at the level of practical-empirical considerations like doubling the number of grid points for the analysis of the distributed unit, taking into account additional vibration modes in the Green functions, etc.In the present paper, we describe a structural method for solving elastic one-dimensional distributed systems with discrete interaction and present an efficient scalar a priori estimate and a universal a posteriori estimate for the accuracy of an approximate solution, which can be used in many approximate methods, e.g., FEM [5].  相似文献   

16.
We study a three-dimensional contact problem on the indentation of an elliptic punch into a face of a linearly elastic wedge. The wedge is characterized by two parameters of elasticity and its edge is subjected to the action of an additional concentrated force. The other face wedge is free from stresses. The problem is reduced to an integral equation for the contact pressure. An asymptotic solution of this equation is obtained which is effective for a given contact region fairly remote from the edge. Calculations are performed that allow one to evaluate the effect of a force applied outside the contact region on the contact pressure distribution. The problem under study is a generalization of L. A. Galin’s problem on a force applied outside a circular punch on an elastic half-space [1, 2]. In a special case of a wedge with an opening angle of 180° and zero contact ellipse eccentricity, the obtained asymptotic relation coincides with the expansion of Galin’s exact solution in a series. Problems of indentation of an elliptic punch into a spatial wedge with the face not loaded outside the contact region have been studied previously. For example, the paper [3] dealt with the case of a known contact region (asymptotic method) and the paper [4] considered the case of an unknown contact region (numerical method). The solution of Galin’s problem allowed the authors of [2] to reduce the contact problem on the interaction of several punches applied to a half-space to a system of Fredholm integral equations of the second kind (Andreikin-Panasyuk method). A topical direction in contact mechanics is the model of discrete contact as well as related problems on the interaction of several punches [2, 5–8]. The interaction of several punches applied to a face of a wedge can be treated in a similar manner and an asymptotic solution can be obtained for the case where a concentrated force is applied at an arbitrary point of this face beyond the contact region rather than on the edge.  相似文献   

17.
18.
Flexural gravity wave scattering by multiple articulated floating elastic plates is investigated in the three cases for water of finite depth, infinite depth and shallow water approximation under the assumptions of two-dimensional linearized theory of water waves. The elastic plates are joined through connectors, which act as articulated joints. In the case when two semi-infinite plates are connected through a single articulation, using the symmetric characteristic of the plate geometry and the expansion formulae for wave-structure interaction problem, the velocity potentials are obtained in closed forms in the case of finite and infinite water depths. On the other hand, in the case of shallow water approximation, the continuity of energy and mass flux are used to obtain a system of equations for the determination of the full velocity potentials for wave scattering by multiple articulations. Further, using the results for single articulation and assuming that the articulated joints are wide apart, the wide-spacing approximation method is used to obtain the reflection coefficient for wave scattering due to multiple articulated floating elastic plates. The effects of the stiffness of the connectors, length of the elastic plates and water depth on the propagation of flexural gravity waves are investigated by analysing the reflection coefficient.  相似文献   

19.
The purpose of the paper is to demonstrate the feasibility of the direct coupling of the finite element method for the structural part with a Wagner representation of the hydrodynamic loads during the impact of an elastic body onto the water surface. An efficient and very general method is developed and validated in two dimensions. Advantages of the present method are outlined for the elastic wedge impact problem; however, the method is applicable to any elastic body with small deadrise angle entering water vertically at moderate velocity. Strategy for coupling of this method with commercial finite element codes is discussed.  相似文献   

20.
This paper describes a Biot–Savart discrete vortex model for simulating the flow patterns which occur when a single high-velocity inflow jet is used to stir the fluid within a circular container. The first stage of the model consists of conformally mapping the circular perimeter of the container onto a rectangle by means of a Schwarz–Christoffel transformation. A potential flow solution is then obtained for the flow inside the rectangle and this is transformed to give the potential flow inside the circle. In the second stage of the simulation, discrete vortices are added at the inlet of the physical system in order to model the inflow shear layers. Velocity components resulting from the discrete vortices and their images in the walls of the cylinder are superimposed on the uniform potential flow solution. The positions of the vortices are updated using a Lagrangian tracking procedure. Viscous effects are incorporated through the use of random walks. From the results it is shown that the discrete vortex method does predict qualitatively the important features of jet-forced reservoir flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号