首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lyocell is a biodegradable filament yarn obtained by directly dissolving cellulose in a mixture of N-methylmorpholine-N-oxide and a non-toxic solvent. Therefore, herein, lyocell fabrics were employed as eco-friendly carbon-precursor substitutes for use as electromagnetic interference (EMI) shielding materials. First, a lyocell fabric treated with polyacrylamide via electron beam irradiation reported in a previous study to increase carbon yields and tensile strengths was carbonized by heating to 900, 1100, and 1300 °C. The carbonization transformed the fabric into a graphitic crystalline structure, and its electrical conductivity and EMI shielding effectiveness (SE) were enhanced despite the absence of metals. For a single sheet, the electrical conductivities of the lyocell-based carbon fabric samples at the different carbonization temperatures were 3.57, 5.96, and 8.91 S m−1, leading to an EMI SE of approximately 18, 35, and 82 dB at 1.5–3.0 GHz, respectively. For three sheets of fabric carbonized at 1300 °C, the electrical conductivity was 10.80 S m−1, resulting in an excellent EMI SE of approximately 105 dB. Generally, EM radiation is reduced by 99.9999% in instances when the EMI SE was over 60 dB. The EMI SE of the three lyocell-based carbon fabric sheets obtained at 1100 °C and that of all the sheets of the sample obtained at 1300 °C exceeded approximately 60 dB.  相似文献   

2.
In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.  相似文献   

3.
Thermo-sensitive poly-N-isopropylacrylamide (poly-NIPAAm) was grafted onto lyocell fibres using cerium ammonium nitrate (CAN) as initiator. The effects of initiation time, initiator concentration, monomer concentration and grafting time on the degree of grafting were investigated. A 15-60 min exposure time, 7.5 mM CAN solution concentration and a 0.5-1 mM NIPAAm monomer concentration were optimal for obtaining a maximum degree of grafting (60-70% at 24 h grafting time) of poly-NIPAAm on lyocell fibres. Higher degree of grafting was obtained increasing the grafting time, such as 120% at 72 h.The properties of the obtained poly-NIPAAm/lyocell copolymer were also investigated. Specifically, the effects of temperature and degree of grafting of poly-NIPAAm on the swelling behaviour of the copolymer were experimentally determined. Moreover, structural characterization, thermal behaviour and morphology of the poly-NIPAAm/lyocell copolymers were examined by Fourier Transform Infrared Spectroscopy (FTIR), Differencial Scanning Calorimetry (DSC) and Scanning electron microscopy (SEM) techniques, respectively.  相似文献   

4.
The aim of this study was to remove 5-hydroxymethyl furfural (5-HMF) and furfural, known as fermentation inhibitors, in acid pretreated hydrolysates (APH) obtained from Scenedesmus obliquus using activated carbon. Microwave-assisted pretreatment was used to produce APH containing glucose, xylose, and fermentation inhibitors (5-HMF, furfural). The response surface methodology was applied to optimize key detoxification variables such as temperature (16.5–58.5 °C), time (0.5–5.5 h), and solid–liquid (S-L) ratio of activated carbon (0.6–7.4 w/v%). Three variables showed significant effects on the removal of fermentation inhibitors. The optimum detoxification conditions with the maximum removal of fermentation inhibitors and the minimum loss of sugars (glucose and xylose) were as follows: temperature of 36.6 °C, extraction time of 3.86 h, and S-L ratio of 3.3 w/v%. Under these conditions, removal of 5-HMF, furfural, and sugars were 71.6, 83.1, and 2.44%, respectively, which agreed closely with the predicted values. When the APH and detoxified APH were used for ethanol fermentation by S. cerevisiae, the ethanol produced was 38.5% and 84.5% of the theoretical yields, respectively, which confirmed that detoxification using activated carbon was effective in removing fermentation inhibitors and increasing fermentation yield without significant removal of fermentable sugars.  相似文献   

5.
Grape pomace and grapeseed are agro-industrial by-products, whose inadequate treatment generates socioeconomic and environmental concerns. Nevertheless, it is possible to valorize them by extracting their bioactive compounds, such as antioxidants (phenolic compounds), vitamin E and fatty acids. The bioactive compounds were extracted using solid-liquid extraction. The yields for phenolic compounds were 18.4 ± 0.4% for grape pomace, and 17.4 ± 0.4%, for grapeseed. For the oil, the yields were 13.3 ± 0.2% and 14.5 ± 0.3% for grape pomace and grapeseed. Antioxidant capacity was assessed by the assay with 2,2-diphenyl-1-picrylhydrazyl (DPPH), and showed that phenolic extract has higher antioxidant capacity than the oils. Grape pomace and grapeseed extracts exhibit, correspondingly, values of 90.8 ± 0.8 and 87.5 ± 0.5 of DPPH inhibition and IC50 of 48.9 ± 0.5 and 55.9 ± 0.7 μgextract·mLDPPH−1. The antimicrobial capacity was assessed by the disk diffusion test, and revealed that, phenolic extracts inhibit the growth of Staphylococcus aureus and Staphylococcus epidermidis. The obtained extracts were incorporated in 10 face cream formulations, with slight modifications in quantities of formulation stabilizers. Their stability was studied for 35 days, and this revealed the possibility of incorporating extracts and oils obtained from by-products as antioxidants in cosmetics, and replacing synthetic ones. As a future recommendation, microencapsulation of the extracts should be performed, in order to increase their stability.  相似文献   

6.
The global chocolate value chain is based exclusively on cacao beans (CBs). With few exceptions, most CBs traded worldwide are produced under a linear economy model, where only 8 to 10% of the biomass ends up in chocolate-related products. This contribution reports the mass balance and composition dynamics of cacao fruit biomass outputs throughout one full year of the crop cycle. This information is relevant because future biorefinery developments and the efficient use of cacao fruits will depend on reliable, robust, and time-dependent compositional and mass balance data. Cacao husk (CH), beans (CBs), and placenta (CP) constitute, as dry weight, 8.92 ± 0.90 wt %, 8.87 ± 0.52 wt %, and 0.57 ± 0.05 wt % of the cacao fruit, respectively, while moisture makes up most of the biomass weight (71.6 ± 2.29 wt %). CH and CP are solid lignocellulosic outputs. Interestingly, the highest cellulose and lignin contents in CH coincide with cacao’s primary harvest season (October to January). CB contains carbohydrates, fats, protein, ash, and phenolic compounds. The total polyphenol content in CBs is time-dependent, reaching maxima values during the harvest seasons. In addition, the fruit contains 4.13 ± 0.80 wt % of CME, a sugar- and nutrient-rich liquid output, with an average of 20 wt % of simple sugars (glucose, fructose, and sucrose), in addition to minerals (mainly K and Ca) and proteins. The total carbohydrate content in CME changes dramatically throughout the year, with a minimum of 10 wt % from August to January and a maximum of 29 wt % in March.  相似文献   

7.
In this study, soybean oil deodorizer distillate (SODD), a mixture of free fatty acids and acylglycerides, and isoamyl alcohol were evaluated as substrates in the synthesis of fatty acid isoamyl monoesters catalyzed by Eversa (a liquid formulation of Thermomyces lanuginosus lipase). SODD and the products were characterized by the chemical and physical properties of lubricant base stocks. The optimal conditions to produce isoamyl fatty acid esters were determined by response surface methodology (RSM) using rotational central composite design (RCCD, 23 factorial + 6 axial points + 5 replications at the central point); they were 1 mol of fatty acids (based on the SODD saponifiable index) to 2.5 mol isoamyl alcohol, 45 °C, and 6 wt.% enzymes (enzyme mass/SODD mass). The effect of the water content of the reactional medium was also studied, with two conditions of molecular sieve ratio (molecular sieve mass/SODD mass) selected as 39 wt.% (almost anhydrous reaction medium) and 9 wt.%. Ester yields of around 50 wt.% and 70 wt.% were reached after 50 h reaction, respectively. The reaction products containing 43.7 wt.% and 55.2 wt.% FAIE exhibited viscosity indices of 175 and 163.8, pour points of −6 °C and −9 °C, flash points of 178 and 104 °C, and low oxidative stability, respectively. Their properties (mainly very high viscosity indices) make them suitable to be used as base stocks in lubricant formulation industries.  相似文献   

8.
This study was proposed to investigate the possibility of O/W nanoemulsion stabilization via natural emulsifiers as a delivery system for fucoxanthin. Nanoemulsions were prepared using ultrasonic treatment (150 W, amplitude 80%, 10 min) with different levels (0.5%, 1%, and 2% wt) of fucoidan, gum Arabic, and sodium caseinate as natural emulsifires and they were compared with tween 80. Then, the creaming index, stability, encapsulation efficacy, Fourier-transform infrared (FT-IR) spectroscopy, and in vitro release were evaluated. The best stability and lowest creaming index were observed at 2% wt of emulsifiers. Nanoemulsions with droplet sizes (113.27–127.50 nm) and zeta potentials (−32.27 to −58.87 mV) were prepared. The droplet size of nanoemulsions was reduced by increasing the emulsifier concentration, and the best nanoemulsion stability after 15 days of storage was in the following order: tween 80 > sodium caseinate > fucoidan > gum Arabic. The encapsulation efficacy of nanoemulsions stabilized by sodium caseinate, fucoidan, and gum Arabic were 88.51 ± 0.11%, 79.32 ± 0.09%, and 60.34 ± 0.13%, respectively. The in vitro gastrointestinal fucoxanthin release of nanoemulsion stabilized with tween 80, sodium caseinate, fucoidan, and gum Arabic were 85.14 ± 0.16%, 76.91 ± 0.34%, 71.41 ± 0.14%, and 68.98 ± 0.36%, respectively. The release of fucoxanthin from nanoemulsions followed Fickian diffusion. The FTIR also confirmed the encapsulation of fucoxanthin.  相似文献   

9.
In this study, the effect of media composition, N/P ratio and cultivation strategy on the formation of carotenoids in a Coelastrella sp. isolate was investigated. A two-stage process utilizing different media in the vegetative stage, with subsequent re-suspension in medium without nitrate, was employed to enhance the formation of carotenoids. The optimal growth and carotenoid content (β-carotene and lutein) in the vegetative phase were obtained by cultivation in M-8 and BG11 media. Use of a N/P ratio of 37.5 and low light intensity of 40 μmol m−2 s−1 (control conditions) led to optimal biomass production of up to 1.31 g L−1. Low concentrations of astaxanthin (maximum of 0.31 wt. %) were accumulated under stress conditions (nitrogen-deficient medium containing 1.5 % of NaCl and light intensity of 500 μmol m−2 s−1), while β-carotene and lutein (combined maximum of 2.12 wt. %) were produced under non-stress conditions. Lipid analysis revealed that palmitic (C16:0) and oleic (C18:1) constituted the main algal fatty acid chains (50.2 ± 2.1% of the total fatty acids), while esterifiable lipids constituted 17.2 ± 0.5% of the biomass by weight. These results suggest that Coelastrella sp. could also be a promising feedstock for biodiesel production.  相似文献   

10.
Application of low-cost carbon black from lignin highly depends on the materials properties, which might by determined by raw material and processing conditions. Four different technical lignins were subjected to thermostabilization followed by stepwise heat treatment up to a temperature of 2000 °C in order to obtain micro-sized carbon particles. The development of the pore structure, graphitization and inner surfaces were investigated by X-ray scattering complemented by scanning electron microscopy and FTIR spectroscopy. Lignosulfonate-based carbons exhibit a complex pore structure with nanopores and mesopores that evolve by heat treatment. Organosolv, kraft and soda lignin-based samples exhibit distinct pores growing steadily with heat treatment temperature. All carbons exhibit increasing pore size of about 0.5–2 nm and increasing inner surface, with a strong increase between 1200 °C and 1600 °C. The chemistry and bonding nature shifts from basic organic material towards pure graphite. The crystallite size was found to increase with the increasing degree of graphitization. Heat treatment of just 1600 °C might be sufficient for many applications, allowing to reduce production energy while maintaining materials properties.  相似文献   

11.
This study investigated supercritical solvent impregnation of polyamide microfiltration membranes with carvacrol and the potential application of the modified membranes in ventilation of open surgical wounds. The impregnation process was conducted in batch mode at a temperature of 40 °C under pressures of 10, 15, and 20 MPa for contact times from 1 to 6 h. FTIR was applied to confirm the presence of carvacrol on the membrane surface. In the next step, the impact of the modification on the membrane structure was studied using scanning electron and ion beam microscopy and cross-filtration tests. Further, the release of carvacrol in carbon dioxide was determined, and finally, an open thoracic cavity model was applied to evaluate the efficiency of carvacrol-loaded membranes in contamination prevention. Carvacrol loadings of up to 43 wt.% were obtained under the selected operating conditions. The swelling effect was detectable. However, its impact on membrane functionality was minor. An average of 18.3 µg of carvacrol was released from membranes per liter of carbon dioxide for the flow of interest. Membranes with 30–34 wt.% carvacrol were efficient in the open thoracic cavity model applied, reducing the contamination levels by 27% compared to insufflation with standard membranes.  相似文献   

12.
CO2 adsorption in porous carbon materials has attracted great interests for alleviating emission of post-combustion CO2. In this work, a novel nitrogen-doped porous carbon material was fabricated by carbonizing the precursor of melamine-resorcinol-formaldehyde resin/graphene oxide (MR/GO) composites with KOH as the activation agent. Detailed characterization results revealed that the fabricated MR(0.25)/GO-500 porous carbon (0.25 represented the amount of GO added in wt.% and 500 denoted activation temperature in °C) had well-defined pore size distribution, high specific surface area (1264 m2·g−1) and high nitrogen content (6.92 wt.%), which was mainly composed of the pyridinic-N and pyrrolic-N species. Batch adsorption experiments demonstrated that the fabricated MR(0.25)/GO-500 porous carbon delivered excellent CO2 adsorption ability of 5.21 mmol·g−1 at 298.15 K and 500 kPa, and such porous carbon also exhibited fast adsorption kinetics, high selectivity of CO2/N2 and good recyclability. With the inherent microstructure features of high surface area and abundant N adsorption sites species, the MR/GO-derived porous carbon materials offer a potentially promising adsorbent for practical CO2 capture.  相似文献   

13.
In this research, enzymatic treatment as an environmental friendly process has been used for recycling process of old cellulosic wastes such as cotton, viscose, and lyocell. Cellulase hydrolyses cellulosic chains and shortens cellulosic fibers. This study investigates to detect the optimum enzyme concentration and time of treatments for suitable changes of length and weight loss. The main purposes of this article are shortening of cellulosic fibers and evaluating of enzymatic treatment in different kind of cellulosic fibers. According to the data of experiments, with the increase of enzyme concentration and the treatment time, the length and weight loss percentage of the cellulosic fibers has been decreased. The length and weight loss percentage of treated viscose is more than that of lyocell and cotton fibers. Optimized condition, reaction time, and enzyme concentration have been determined by mean length of treated cellulosic samples. Suitable longitudinal distribution of fiber for papermaking industries is in the range of 0 to 4 mm. Optimum enzyme concentration and treatment time for recycling cotton, lyocell, and viscose fibers are 2% and 48 h for cotton and lyocell and 0.5% and 48 h for viscose, respectively. According to the data of experiment, the length of treated fibers is appropriate for its usage as a raw material in papermaking industries.  相似文献   

14.
Thermoplastic fiber composites were prepared using high modulus lyocell (regenerated cellulose) fibers for reinforcement and cellulose acetate butyrate (CAB) as matrix. Choices were made with regard to fiber options (fabric versus continuous tow) and method of matrix deposition (prepregging by powder coating, film stacking, or solution impregnating). The results suggest that solution-prepregged fiber tow consolidated at circa 200°C produced unidirectional consolidated panels with tensile strength, modulus, and strain at failure values of approximately 250MPa,>20GPa and 3–4%, respectively, at fiber volume contents of approximately 60%. Modulus and ultimate tensile strength increased with fiber content, and modulus followed rule-of-mixture behavior. Adequate surface wetting and matrix-fiber adhesion were found with solution-prepregged composites. The unexpectedly low strain at failure (2 to <4%) was attributed to brittle matrix failure, and failure surfaces revealed that the fibers, for the most part, remained intact after the matrix had failed.  相似文献   

15.
This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g−1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g−1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2.  相似文献   

16.
Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.  相似文献   

17.
Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both secondary metabolites and biomass production by plants. The effect of chitosan on S. marianum cell suspension is not known yet. In the present study, suspension cultures of S. marianum were exploited for their in vitro potential to produce bioactive flavonolignans in the presence of chitosan. Established cell suspension cultures were maintained on the same hormonal media supplemented with 0.5 mg/L BAP (6-benzylaminopurine) and 1.0 mg/L NAA (α-naphthalene acetic acid) under photoperiod 16/8 h (light/dark) and exposed to various treatments of chitosan (ranging from 0.5 to 50.0 mg/L). The highest biomass production was observed for cell suspension treated with 5.0 mg/L chitosan, resulting in 123.3 ± 1.7 g/L fresh weight (FW) and 17.7 ± 0.5 g/L dry weight (DW) productions. All chitosan treatments resulted in an overall increase in the accumulation of total flavonoids (5.0 ± 0.1 mg/g DW for 5.0 mg/L chitosan), total phenolic compounds (11.0 ± 0.2 mg/g DW for 0.5 mg/L chitosan) and silymarin (9.9 ± 0.5 mg/g DW for 0.5 mg/L chitosan). In particular, higher accumulation levels of silybin B (6.3 ± 0.2 mg/g DW), silybin A (1.2 ± 0.1 mg/g DW) and silydianin (1.0 ± 0.0 mg/g DW) were recorded for 0.5 mg/L chitosan. The corresponding extracts displayed enhanced antioxidant and anti-inflammatory capacities: in particular, high ABTS antioxidant activity (741.5 ± 4.4 μM Trolox C equivalent antioxidant capacity) was recorded in extracts obtained in presence of 0.5 mg/L of chitosan, whereas highest inhibitions of cyclooxygenase 2 (COX-2, 30.5 ± 1.3 %), secretory phospholipase A2 (sPLA2, 33.9 ± 1.3 %) and 15-lipoxygenase (15-LOX-2, 31.6 ± 1.2 %) enzymes involved in inflammation process were measured in extracts obtained in the presence of 5.0 mg/L of chitosan. Taken together, these results highlight the high potential of the chitosan elicitation in the S. marianum cell suspension for enhanced production of antioxidant and anti-inflammatory silymarin-rich extracts.  相似文献   

18.
Coal combustion greatly contributes to global emissions of toxic gases into the atmosphere, with sulfur emissions as one of the prominent pollutants in addition to carbon dioxide. Nevertheless, Botswana utilizes Morupule''s sub‐bituminous coal with average sulfur and ash contents, as determined in this study being 1.9 and 24.4 % by weight with an average calorific value of 22 MJ Kg−1 to generate electricity. We report an optimized extraction method for reducing total sulfur in Morupule coal from 1.9±0.2 to 0.43±0.02 wt.% at optimum conditions of ethanol/water (90/10, v/v %) at 129 °C (105 bars) in 10 minutes. A Box–Behnken experimental design was employed to select the optimal conditions of temperature (100–180 °C), water proportion in ethanol (10–90, v/v %) and extraction time (10–30 minutes), thus reducing the total sulfur under these mild conditions compared to conventional extraction. The optimized conditions were however not efficient in removing ash.  相似文献   

19.
Starch is a biocompatible and economical biopolymer in which interest has been shown in obtaining electrospun fibers. This research reports that cassava (CEX) and pea (PEX) starches pretreated by means of reactive extrusion (REX) improved the starches rheological properties and the availability of amylose to obtain fibers. Solutions of CEX and PEX (30–36% w/v) in 38% v/v formic acid were prepared and the rheological properties and electrospinability were studied. The rheological values indicated that to obtain continuous fibers without beads, the entanglement concentration (Ce) must be 1.20 and 1.25 times the concentration of CEX and PEX, respectively. In CEX, a higher amylose content and lower viscosity were obtained than in PEX, which resulted in a greater range of concentrations (32–36% w/v) to obtain continuous fibers without beads with average diameters ranging from 316 ± 65 nm to 394 ± 102 nm. In PEX, continuous fibers without beads were obtained only at 34% w/v with an average diameter of 170 ± 49 nm. This study showed that starches (20–35% amylose) pretreated through REX exhibited electrospinning properties to obtain fibers, opening the opportunity to expand their use in food, environmental, biosensor, and biomedical applications, as vehicles for the administration of bioactive compounds.  相似文献   

20.
Biofortification of pulse crops with Zn and Fe is a viable approach to combat their widespread deficiencies in humans. Lentil (Lens culinaris Medik.) is a widely consumed edible crop possessing a high level of Zn and Fe micronutrients. Thus, the present study was conducted to examine the influence of foliar application of Zn and Fe on productivity, concentration, uptake and the economics of lentil cultivation (LL 931). For this, different treatment combinations of ZnSO4·7H2O (0.5%) and FeSO4·7H2O (0.5%), along with the recommended dose of fertilizer (RDF), were applied to the lentil. The results of study reported that the combined foliar application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at pre-flowering (S1) and pod formation (S2) stages was most effective in enhancing grain and straw yield, Zn and Fe concentration, and uptake. However, the outcome of this treatment was statistically on par with the results obtained under the treatment ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. A single spray of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage enhanced the grain and straw yield up to 39.6% and 51.8%, respectively. Similarly, Zn and Fe concentrations showed enhancement in grain (10.9% and 20.4%, respectively) and straw (27.5% and 27.6% respectively) of the lentil. The increase in Zn and Fe uptake by grain was 54.8% and 68.0%, respectively, whereas uptake by straw was 93.6% and 93.7%, respectively. Also the benefit:cost was the highest (1.96) with application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. Conclusively, the combined use of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage can contribute significantly towards yield, Zn and Fe concentration, as well as uptake and the economic returns of lentil to remediate the Zn and Fe deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号