首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the present article, we apply the variational iteration method to obtain the numerical solution of the functional integral equations. This method does not need to be dependent on linearization, weak nonlinearity assumptions or perturbation theory. Application of this method in finding the approximate solution of some examples confirms its validity. The results seem to show that the method is very effective and convenient for solving such equations.  相似文献   

2.
In this study, linear and nonlinear partial differential equations with the nonhomogeneous initial conditions are considered. We used Variational iteration method (VIM) and Homotopy perturbation method (HPM) for solving these equations. Both methods are used to obtain analytic solutions for different types of differential equations. Four examples are presented to show the application of the present techniques. In these schemes, the solution takes the form of a convergent series with easily computable components. The present methods perform extremely well in terms of efficiency and simplicity. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
The similarity transform for the steady three‐dimensional Navier–Stokes equations of flow between two stretchable disks gives a system of nonlinear ordinary differential equations. In this article, the variational iteration method was used for solving these equations. The results have been compared with the numerical results. This article depicts that the VIM is an efficient and powerful method for solving nonlinear differential equations. This method is applicable to strongly and weakly nonlinear problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

4.
The work presents an adaptation of iteration method for solving a class of thirst order partial nonlinear differential equation with mixed derivatives.The class of partial differential equations present here is not solvable with neither the method of Green function, the most usual iteration methods for instance variational iteration method, homotopy perturbation method and Adomian decomposition method, nor integral transform for instance Laplace,Sumudu, Fourier and Mellin transform. We presented the stability and convergence of the used method for solving this class of nonlinear chaotic equations.Using the proposed method, we obtained exact solutions to this kind of equations.  相似文献   

5.
Newton iteration method can be used to find the minimal non‐negative solution of a certain class of non‐symmetric algebraic Riccati equations. However, a serious bottleneck exists in efficiency and storage for the implementation of the Newton iteration method, which comes from the use of some direct methods in exactly solving the involved Sylvester equations. In this paper, instead of direct methods, we apply a fast doubling iteration scheme to inexactly solve the Sylvester equations. Hence, a class of inexact Newton iteration methods that uses the Newton iteration method as the outer iteration and the doubling iteration scheme as the inner iteration is obtained. The corresponding procedure is precisely described and two practical methods of monotone convergence are algorithmically presented. In addition, the convergence property of these new methods is studied and numerical results are given to show their feasibility and effectiveness for solving the non‐symmetric algebraic Riccati equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The variational iteration method (VIM) attracted much attention in the past few years as a promising method for solving nonlinear differential equations. It is shown in this paper that the application of VIM to a special kind of nonlinear differential equations leads to calculation of unneeded terms and more time consumed in repeated calculations for series solutions. A modified VIM is introduced to eliminate the shortcomings; and its effectiveness is illustrated by some examples.  相似文献   

7.
In this paper, we provide a new modification of the variational iteration method (MVIM) for solving van der Pol equations. The modification couples the classical variational iteration method with He’s polynomials, where the He’s polynomials are applied to the approximate solution and the initial condition to eliminate secular terms. For the large ?, the numerical results demonstrate that the modification method get an accurate approximate period than the other presented methods.  相似文献   

8.
本文利用变分迭代法求解比例延迟微分方程。通过解一些比例延迟微分方程,说明变分迭代法能很好地得到比例延迟微分方程的解。  相似文献   

9.
介绍了一种新型的,不同于传统的雅克比或高斯塞德尔迭代法的,求解线性方程组的方阵乘幂求和法,并引入了方阵意义上求积分的龙贝格法.该算法成立须以方阵A为实阵,非奇异且主对角元素占优.该法较雅克比或高斯塞德尔迭代的计算量小,特别有助于求解大型线性方程组的问题.  相似文献   

10.
A combination method of the Newton iteration and two‐level finite element algorithm is applied for solving numerically the steady Navier‐Stokes equations under the strong uniqueness condition. This algorithm is motivated by applying the m Newton iterations for solving the Navier‐Stokes problem on a coarse grid and computing the Stokes problem on a fine grid. Then, the uniform stability and convergence with respect to ν of the two‐level Newton iterative solution are analyzed for the large m and small H and h << H. Finally, some numerical tests are made to demonstrate the effectiveness of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

11.
We present a Hermitian and skew-Hermitian splitting (HSS) iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and positive definite/semi-definite matrices. The unconditional convergence of the HSS iteration method is proved and an upper bound on the convergence rate is derived. Moreover, to reduce the computing cost, we establish an inexact variant of the HSS iteration method and analyze its convergence property in detail. Numerical results show that the HSS iteration method and its inexact variant are efficient and robust solvers for this class of continuous Sylvester equations.  相似文献   

12.
13.
The main aim of this paper is to examine the effectiveness one of the two-stage iterative method known as Half-Sweep Arithmetic Mean (HSAM) method in solving the dense linear systems generated from the discretization of the first and second kinds of linear Fredholm integral equations. In addition, the formulation and implementation of the HSAM iterative method are also presented. Some illustrative examples are given to point out the efficiency of the proposed method.  相似文献   

14.
This paper presents numerical solutions for the space‐ and time‐fractional Korteweg–de Vries equation (KdV for short) using the variational iteration method. The space‐ and time‐fractional derivatives are described in the Caputo sense. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers in the functionals can be identified optimally via variational theory. The iteration method, which produces the solutions in terms of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and accurate when applied to space‐ and time‐fractional KdV equations. The method introduces a promising tool for solving many space–time fractional partial differential equations. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

15.
This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration, secant line method, etc.) for solving nonlinear equations and advances some geometrical methods of iteration that are flexible and efficient.  相似文献   

16.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

17.
In this paper, we apply He''s Variational iteration method (VIM) for solving nonlinear Newell-Whitehead-Segel equation. By using this method three different cases of Newell-Whitehead-Segel equation have been discussed. Comparison of the obtained result with exact solutions shows that the method used is an effective and highly promising method for solving different cases of nonlinear Newell-Whitehead-Segel equation.  相似文献   

18.
一个三阶牛顿变形方法   总被引:3,自引:2,他引:1  
基于反函数建立的积分方程,结合Simpson公式,给出了一个非线性方程求根的新方法,即为牛顿变形方法.证明了它至少三次收敛到单根,与牛顿法相比,提高了收敛阶和效率指数.文末给出数值试验,且与牛顿法和同类型牛顿变形法做了比较.结果表明方法具有较好的优越性,它丰富了非线性方程求根的方法.  相似文献   

19.
A squared Smith type algorithm for solving large‐scale discrete‐time Stein equations is developed. The algorithm uses restarted Krylov spaces to compute approximations of the squared Smith iterations in low‐rank factored form. Fast convergence results when very few iterations of the alternating direction implicit method are applied to the Stein equation beforehand. The convergence of the algorithm is discussed and its performance is demonstrated by several test examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a parameterized Newton method using generalized Jacobians and a Broyden-like method for solving nonsmooth equations. The former ensures that the method is well-defined even when the generalized Jacobian is singular. The latter is constructed by using an approximation function which can be formed for nonsmooth equations arising from partial differential equations and nonlinear complementarity problems. The approximation function method generalizes the splitting function method for nonsmooth equations. Locally superlinear convergence results are proved for the two methods. Numerical examples are given to compare the two methods with some other methods.This work is supported by the Australian Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号