共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
This work aims to develop and validate a numerical model to simulate the flow-structure interaction in tube bundles subjected to two-phase flow. The model utilizes a mixture multiphase module in which a drift flux formulation is used to account for the slip between the phases. Two methods of numerical flow-structure interaction are used to predict the onset of fluidelastic instability (FEI) in the streamwise direction for a two-phase air–water flow mixture in parallel triangular tube bundles. These models are the hybrid analytical-flow field model and the direct numerical flow/structure coupling model. This work investigates the effects of void fractions in the range of 20% to 80% and several pitch-to-diameter ratios (P/D) in the range of 1.3 to 1.7. The results of the fluidelastic forces and the stability threshold are validated against the experimental data available in the literature and show an excellent agreement. The streamwise FEI threshold shows a significant dependency on the pitch-to-diameter ratio while the void fraction exhibits a lesser effect. Generally, the stability threshold increases as the pitch-to-diameter ratio increases. The model that was developed paves the way for devising of more reliable prediction tools for FEI in steam generators. 相似文献
3.
Fluidelastic instability is considered a critical flow induced vibration mechanism in tube and shell heat exchangers. It is believed that a finite time lag between tube vibration and fluid response is essential to predict the phenomenon. However, the physical nature of this time lag is not fully understood. This paper presents a fundamental study of this time delay using a parallel triangular tube array with a pitch ratio of 1.54. A computational fluid dynamics (CFD) model was developed and validated experimentally in an attempt to investigate the interaction between tube vibrations and flow perturbations at lower reduced velocities Ur=1–6 and Reynolds numbers Re=2000–12 000. The numerical predictions of the phase lag are in reasonable agreement with the experimental measurements for the range of reduced velocities Ug/fd=6–7. It was found that there are two propagation mechanisms; the first is associated with the acoustic wave propagation at low reduced velocities, Ur<2, and the second mechanism for higher reduced velocities is associated with the vorticity shedding and convection. An empirical model of the two mechanisms is developed and the phase lag predictions are in reasonable agreement with the experimental and numerical measurements. The developed phase lag model is then coupled with the semi-analytical model of Lever and Weaver to predict the fluidelastic stability threshold. Improved predictions of the stability boundaries for the parallel triangular array were achieved. In addition, the present study has explained why fluidelastic instability does not occur below some threshold reduced velocity. 相似文献
4.
Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability. 相似文献
5.
In this work, the drag coefficient and the void fraction around a tube subjected to two-phase cross flow were studied for a single tube and for a tube placed in an array. The drag coefficients were determined by measuring the pressure distribution around the perimeter of the tube. Single tube drag data were taken when the tube was held both rigidly and flexibly. The test tube was made of acrylic and was 2.2 cm in diameter and 20 cm in length. In the experiments, liquid Reynolds number ranged from 430 to 21,900 for the single tube and liquid gap Reynolds number ranged from 32,900 and 61,600 for the tube placed in a triangular array. Free stream void fraction was varied from 0 to 0.4. At low Reynolds numbers, the ratio of two-phase to single-phase drag coefficient is found to be a strong function of εGr/Re2. However, at high Reynolds numbers only void fraction is the important parameter. Empirical correlations have been developed for the ratio of two-phase drag on a single tube and on a tube placed in an array. 相似文献
6.
Bruno Agostini Rmi Revellin John R. Thome 《International Journal of Multiphase Flow》2008,34(6):590-601
The velocity of elongated vapor bubbles exiting two horizontal micro-evaporator channels with refrigerant R-134a was studied. Experiments with tube diameters of 509 and 790 μm, mass velocities from 200 to 1500 kg/m2 s, vapor qualities from 2% to 19% and a nominal saturation temperature of 30 °C were analyzed with a fast, high-definition digital video camera. It was found from image processing of numerous videos that the elongated bubble velocity relative to that of homogeneous flow increased with increasing bubble length until a plateau was reached, and also increased with increasing channel diameter and increasing mass velocity. Furthermore an analytical model developed for a diabatic two-phase flow, has been proposed that is able to predict these trends. In addition, the model shows that the relative elongated bubble velocity should decrease with increasing pressure, which is consistent with the physics of two-phase flow. 相似文献