首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Vortex-induced vibration (VIV) of two elastically coupled circular cylinders in side-by-side arrangement is investigated numerically. The Reynolds-averaged Navier–Stokes equations are solved by the finite element method for simulating the flow and the equation of motion is solved for calculating the vibration. The mass ratio (the ratio of the mass of the cylinder to the displaced fluid mass) is 2 and the Reynolds number is 5000 in the simulations. Simulations are carried out for one symmetric configuration (referred to be Case A) and one asymmetric configuration (referred to be Case B). In both Case A and Case B, the primary response frequencies of the two cylinders are found to be the same both inside and outside the lock-in regimes. Five response regimes are found in both cases and they are the first-mode lock-in regime, the second-mode lock-in regime, the sum-frequency lock-in regime and two transition regimes. When the vibration is transiting from the first- to the second-mode lock-in regimes, the vibration of each cylinder contains both first- and the second-mode natural frequencies, and the vibrations are usually irregular. In the transition regime between the second-mode lock-in and the sum-frequency lock-in regimes, the response frequencies of both cylinders increases with an increase in the reduced velocity until they are close to the sum of the two natural frequencies. In both cases, the lower boundary reduced velocity of the total lock-in regime (the sum of the five lock-in regimes) is about 3 and the upper boundary reduced velocity is about 11 times the first-to-second-mode natural frequency ratio.  相似文献   

2.
Results are presented for flow-induced vibrations of a pair of equal-sized circular cylinders of low nondimensional mass (m*=10) in a tandem arrangement. The cylinders are free to oscillate both in streamwise and transverse directions. The Reynolds number, based on the free-stream speed and the diameter of the cylinders, D is 100 and the centre-to-centre distance between the cylinders is 5.5D. The computations are carried out for reduced velocities in the range 2≤U*≤15. The structural damping is set to zero for enabling maximum amplitudes of oscillation. A stabilized finite element method is utilized to carry out the computations in two dimensions. Even though the response of the upstream cylinder is found to be qualitatively similar to that of an isolated cylinder, the presence of a downstream cylinder is found to have significant effect on the behaviour of the upstream cylinder. The downstream cylinder undergoes very large amplitude of oscillations in both transverse and streamwise directions. The maximum amplitude of transverse response of the downstream cylinder is quite similar to that of a single cylinder at higher Re beyond the laminar regime. Lock-in and hysteresis are observed for both upstream and downstream cylinders. The downstream cylinder undergoes large amplitude oscillations even beyond the lock-in state. The phase between transverse oscillations and lift force suffers a 180 jump for both the cylinders almost in the middle of the synchronization regime. The phase between the transverse response of the two cylinders is also studied. Complex flow patterns are observed in the wake of the freely vibrating cylinders. Based on the phase difference and the flow patterns, the entire flow range is divided into five sub-regions.  相似文献   

3.
Three-dimensional fluid computations have been performed to investigate the flows around two circular cylinders in tandem arrangements at a subcritical Reynolds number, Re=2.2×104. The center-to-center space between the cylinders was varied from twice the cylinder diameter to five times that, and the flows and fluid-dynamic forces obtained from the simulations are compared with the experimental results reported in the literature. Special attention is paid to the characteristics of the vortices shed from the upstream cylinder such as the convection, the impingement onto the downstream cylinder and the interaction with the vortices from the downstream cylinder. The effects of the vortices from the upstream cylinder on the fluid-dynamic forces acting on the downstream cylinder are discussed.  相似文献   

4.
5.
Laboratory experiments with a side-by-side arrangement of two vertical, high aspect ratio (length over diameter) and low mass ratio (mass over mass of displaced fluid) cylinders, pin-jointed at the ends and vibrating at low mode number, were carried out in a free-surface water channel. The dynamic response of the models under two different wake interference situations is presented here. Initially, one of the cylinders was fixed and the other was completely free to move. In a second battery of experiments both cylinders were free to vibrate. A very large parameter space was covered by varying the free-stream flow speeds, the natural frequencies of the system and the separation between the models, allowing the identification of vortex-induced vibrations (VIV) and wake-coupled VIV (WCVIV). Amplitudes, frequencies and phase synchronisation between the models are presented.  相似文献   

6.
The flow-induced vibrations of two elastically mounted circular cylinders subjected to the planar shear flow in tandem arrangement are studied numerically at Re=160. A four-step semi-implicit Characteristic-based split (4-SICBS) finite element method is developed under the framework of the fractional step method to cope with the vortex-induced vibration (VIV) problem. For the computational code verification, two benchmark problems are examined in the laminar region: flow-induced vibration of an elastically mounted cylinder having two degrees of freedom and past two stationary ones in tandem arrangement. Regarding the two-cylinder VIVs in shear flow, the computation is conducted with the cylinder reduced mass Mr=2.5π and the structural damping ratio ξ=0.0. The effects of some key parameters, such as shear rate (k=0.0, 0.05, 0.1), reduced velocity (Ur=3.0–18.0) and spacing ratio (Lx/D=2.5, 3.5, 4.5, 8.0), are demonstrated. It is observed that the shear rate and reduced velocity play an important role in the VIVs of both cylinders at various center-to-center distances. Additionally, in comparison with the single cylinder case, a further study indicated that the gap flow has a significant impact on such a dynamic system, leading it to be more complex. The results show that, the performances of ‘dual-resonant’ are discovered in the shear flow. A valley is formed in transverse oscillation amplitude of DC for each spacing ratio when Ur is about 6.0. For the X–Y trajectories of the circular cylinders, figure-eight, figure-O and oval shape are obtained. Finally, the interactions between cylinders are revealed, together with the wake-induced vibration (WIV) mechanism underlying the oscillation characteristics of both cylinders exposed to shear flow. Besides, the “T+P” wake pattern is discovered herein.  相似文献   

7.
In the present study we investigate the secondary instability of the in-phase synchronized vortex shedding from two side-by-side circular cylinders at low Reynolds numbers. Two distinct Floquet modes become unstable for different values of the Reynolds number and of the non-dimensional gap spacing, leading to the onset of the well-known flip-flop instability of the two cylinder wakes. In both cases the two-dimensional Floquet analysis reveals that at very low Reynolds numbers, a pair of complex-conjugate multipliers crosses the unit circle, showing the same frequency as the biased gap-flow flip-over. In the past literature this behaviour has been often ascribed to a bistability of the flow. On the contrary, the present DNS and stability results provide evidence that at low Reynolds numbers, the flip-flopping behaviour originates from a Neimark–Sacker bifurcation of the in-phase shedding cycle.  相似文献   

8.
Results showing the dynamic response of a tandem arrangement of two vertical high aspect ratio (length over diameter) and low mass ratio (mass over mass of displaced fluid) flexible cylinders vibrating at low mode number are presented in this paper. Two circular cylinder models were aligned with the flow, so the downstream or trailing cylinder was immersed in the wake of the leading one. Centre-to-centre distances from 2 to 4 diameters were studied. The models were very similar in design, with external diameters of 16 mm and a total length of 1.5 m. Reynolds numbers up to 12 000 were achieved with reduced velocities, based on the fundamental natural frequency of the downstream cylinder in still water, up to 16. The trailing model had a mass ratio of 1.8 with a combined mass-damping parameter of 0.049, whilst the corresponding figures for the leading cylinder were 1.45 and 0.043, respectively. The dynamic response of the trailing model has been analysed by studying cross-flow and in-line amplitudes, dominant frequencies and modal amplitudes. The dynamic response of the leading one is analysed by means of its cross-flow amplitudes and dominant frequencies and it is also related to the motion of the trailing cylinder by studying the synchronisation between their instantaneous cross-flow motions. Planar digital particle image velocimetry (DPIV) was used to visualise the wake. Different response regimes have been identified based on the type of oscillations exhibited by the cylinders: vortex-induced (VIV), wake-induced (WIV) or combinations of both.  相似文献   

9.
Numerical simulations have been performed for flow past two equal‐sized square cylinders in tandem arrangement subjected to incoming planar shear flow. Effect of L/d ratio and the shear parameter has been studied. The range of L/d ratio (ratio of center‐to‐center distance (L) to cylinder width (d)) is varied from 2 to 7 and the non‐dimensional shear parameter (K) is varied from 0.0 to 0.4 in steps of 0.1. For all the cases the Reynolds number (Re) based on centerline velocity and cylinder width is fixed at 100. The results are compared with that of isolated square cylinder with uniform flow. Strouhal number decreases with increasing shear parameter. There are more than one shedding frequency at high shear parameters and L/d ratios. The mean drag coefficient is decreased with shear parameter and lesser than that of the single cylinder. The root mean square (RMS) value of both lift and drag coefficients is higher for the downstream cylinder for all values of shear parameter. With increasing L/d ratio, for both lift and drag, the RMS value increases and then decreases for upstream cylinder, whereas it continuously increases for the downstream cylinder. The stagnation point is moved towards the top leading edge with increasing shear. The critical L/d ratio, which is defined as the distance between two cylinders, beyond which the vortex shedding from the upstream cylinder occurs, decreases with increasing shear parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
11.
This paper describes a numerical study of the two‐dimensional and three‐dimensional unsteady flow over two square cylinders arranged in an in‐line configuration for Reynolds numbers from 40 to 1000 and a gap spacing of 4D, where D is the cross‐sectional dimension of the cylinders. The effect of the cylinder spacing, in the range G = 0.3D to 12D, was also studied for selected Reynolds numbers, that is, Re = 130, 150 and 500. An incompressible finite volume code with a collocated grid arrangement was employed to carry out the flow simulations. Instantaneous and time‐averaged and spanwise‐averaged vorticity, pressure, and streamlines are computed and compared for different Reynolds numbers and gap spacings. The time averaged global quantities such as the Strouhal number, the mean and the RMS values of the drag force, the base suction pressure, the lift force and the pressure coefficient are also calculated and compared with the results of a single cylinder. Three major regimes are distinguished according to the normalized gap spacing between cylinders, that is, the single slender‐body regime (G < 0.5), the reattach regime (G < 4) and co‐shedding or binary vortex regime (G ≥4). Hysteresis with different vortex patterns is observed in a certain range of the gap spacings and also for the onset of the vortex shedding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
13.
The effect of cactus-like spines on the topology and the dynamics of the flow past a stationary or pivoted cylinder are experimentally studied. The experiments are performed either in a water channel or a wind tunnel at low to moderate Reynolds number (390–12 500). The instantaneous velocity field is recorded using TR-PIV and investigated for three different configurations: no spines, short spines (0.1D) and long spines (0.2D). The results show how the spines are able to slow the flow past the cylinder and then increase the recirculation area by up to 128% while the maximum fluctuating kinetic energy intensity is decreased by up to 35%. Moreover, the spines have a significant effect on the vortex shedding and the dynamic pressure at the surface of the cylinder, thus significantly reducing both the amplitude and the frequency at which a pivoted cylinder oscillates.  相似文献   

14.
The flow past an interface piercing circular cylinder at the Reynolds number Re=2.7×104 and the Froude numbers Fr=0.2 and 0.8 is investigated using large-eddy simulation. A Lagrangian dynamic subgrid-scale model and a level set based sharp interface method are used for the spatially filtered turbulence closure and the air-water interface treatment, respectively. The mean interface elevation and the rms of interface fluctuations from the simulation are in excellent agreement with the available experimental data. The organized periodic vortex shedding observed in the deep flow is attenuated and replaced by small-scale vortices at the interface. The streamwise vorticity and the outward transverse velocity generated near the edge of the separated region, which enforces the separated shear layers to deviate from each other and restrains their interaction, are primarily responsible for the devitalization of the periodic vortex shedding at the interface. The lateral gradient of the difference between the vertical and transverse Reynolds normal stresses, increasing with the Froude number, is the main source of the streamwise vorticity and the outward transverse velocity at the interface.  相似文献   

15.
The effect of a wake-mounted splitter plate on the flow around a surface-mounted finite-height square prism was investigated experimentally in a low-speed wind tunnel. Measurements of the mean drag force and vortex shedding frequency were made at Re=7.4×104 for square prisms of aspect ratios AR=9, 7, 5 and 3. Measurements of the mean wake velocity field were made with a seven-hole pressure probe at Re=3.7×104 for square prisms of AR=9 and 5. The relative thickness of the boundary layer on the ground plane was δ/D=1.5–1.6 (where D is the side length of the prism). The splitter plates were mounted vertically from the ground plane on the wake centreline, with a negligible gap between the leading edge of the plate and rear of the prism. The splitter plate heights were always the same as the heights of prisms, while the splitter plate lengths ranged from L/D=1 to 7. Compared to previously published results for an “infinite” square prism, a splitter plate is less effective at drag reduction, but more effective at vortex shedding suppression, when used with a finite-height square prism. Significant reduction in drag was realized only for short prisms (of AR≤5) when long splitter plates (of L/D≥5) were used. In contrast, a splitter plate of length L/D=3 was sufficient to suppress vortex shedding for all aspect ratios tested. Compared to previous results for finite-height circular cylinders, finite-height square prisms typically need longer splitter plates for vortex shedding suppression. The effect of the splitter plate on the mean wake was to narrow the wake width close to the ground plane, stretch and weaken the streamwise vortex structures, and increase the lateral entrainment of ambient fluid towards the wake centreline. The splitter plate has little effect on the mean downwash. Long splitter plates resulted in the formation of additional streamwise vortex structures in the upper part of the wake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号