首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The partial slip boundary condition produced by a superhydrophobic surface in the Cassie state has been shown capable of reducing skin friction drag as well as influencing the flow around coated bodies including cylinders and spheres. In this paper, we investigated how the changes in vortex shedding and separation previously observed on superhydrophobic cylinders affects the rms lift force and the resulting oscillations induced on an elastically mounted cylinder. Two hydrophobic polytetrafluoroethylene cylinders were studied. The first was smooth and the second was roughened to make it superhydrophobic and to induce slip. The presence of slip was found to decrease rms lift and amplitude of the oscillating cylinder by up to 15% with no measurable impact on drag or the natural frequency of the elastically mounted system. We show that the observed reductions are a direct result of reduced fluid forcing on the superhydrophobic cylinder.  相似文献   

2.
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.  相似文献   

3.
A combined analytical and numerical study of the Stokes flow caused by a rigid spheroidal particle translating along its axis of revolution in a viscous fluid is presented. The fluid is allowed to slip at the surface of the particle. The general solution for the stream function in prolate and oblate spheroidal coordinates can be expressed in an infinite-series form of semi-separation of variables. The slip boundary condition incorporating the shear stress at the particle surface is applied to this general solution to determine its unknown coefficients of the leading orders. The solution of these coefficients can be either numerical results obtained from a boundary-collocation method or explicit formulas derived analytically. The drag force exerted on the spheroidal particle by the fluid is evaluated with good convergence behavior for various values of the slip parameter and aspect ratio of the particle. The agreement between our hydrodynamic drag results and the relevant numerical solutions obtained previously using a singularity method is excellent. Although the drag force acting on the translating spheroid normalized by that on a corresponding sphere with equal equatorial radius increases monotonically with an increase in the axial-to-radial aspect ratio for a no-slip spheroid, it decreases monotonically as this aspect ratio increases for a perfect-slip spheroid. The normalized drag force exerted on a spheroid with a given surface slip coefficient in between the no-slip and perfect-slip limits is not a monotonic function of its aspect ratio. For a spheroid with a fixed aspect ratio, its drag force is a monotonically decreasing function of the slip coefficient of the particle.  相似文献   

4.
A combined analytical–numerical study for the creeping flow caused by a spherical fluid or solid particle with a slip-flow surface translating in a viscous fluid along the centerline of a circular cylindrical pore is presented. To solve the axisymmetric Stokes equations for the fluid velocity field, a general solution is constructed from the superposition of the fundamental solutions in both cylindrical and spherical coordinate systems. The boundary conditions are enforced first at the pore wall by the Fourier transforms and then on the particle surface by a collocation technique. Numerical results for the hydrodynamic drag force acting on the particle are obtained with good convergence for various values of the relative viscosity or slip coefficient of the particle, the slip parameter of the pore wall, and the ratio of radii of the particle and pore. For the motion of a fluid sphere along the axis of a cylindrical pore, our drag results are in good agreement with the available solutions in the literature. As expected, the boundary-corrected drag force for all cases is a monotonic increasing function of the ratio of particle-to-pore radii, and approaches infinity in the limit. Except for the case that the cylindrical pore is hardly slip and the value of the ratio of particle-to-pore radii is close to unity, the drag force exerted on the particle increases monotonically with an increase in its relative viscosity or with a decrease in its slip coefficient for a constant ratio of radii. In a comparison for the pore shape effect on the axial translation of a slip sphere, it is found that the particle in a circular cylindrical pore in general acquires a lower hydrodynamic drag than in a spherical cavity, but this trend can be reversed for the case of highly slippery particles and pore walls.  相似文献   

5.
In this paper, the effects of viscous and Ohmic heating and heat generation/absorption on magnetohydrodynamic flow of an electrically conducting Casson thin film fluid over an unsteady horizontal stretching sheet in a non-Darcy porous medium are investigated. The fluid is assumed to slip along the boundary of the sheet. Similarity transformation is used to translate the governing partial differential equations into ordinary differential equations. A shooting technique in conjunction with the 4 th order Runge-Kutta method is used to solve the transformed equations. Computations are carried out for velocity and temperature of the fluid thin film along with local skin friction coefficient and local Nusselt number for a range of values of pertinent flow parameters. It is observed that the Casson parameter has the ability to enhance free surface velocity and film thickness, whereas the Forchheimer parameter, which is responsible for the inertial drag has an adverse effect on the fluid velocity inside the film. The velocity slip along the boundary tends to decrease the fluid velocity. This investigation has various applications in engineering and in practical problems such as very large scale integration(VLSI) of electronic chips and film coating.  相似文献   

6.
The no‐slip condition is an assumption that cannot be derived from first principles and a growing number of literatures replace the no‐slip condition with partial‐slip condition, or Navier‐slip condition. In this study, the influence of partial‐slip boundary conditions on the laminar flow properties past a circular cylinder was examined. Shallow‐water equations are solved by using the finite element method accommodating SU/PG scheme. Four Reynolds numbers (20, 40, 80, and 100) and six slip lengths were considered in the numerical simulation to investigate the effects of slip length and Reynolds number on characteristic parameters such as wall vorticity, drag coefficient, separation angle, wake length, velocity distributions on and behind the cylinder, lift coefficient, and Strouhal number. The simulation results revealed that as the slip length increases, the drag coefficient decreases since the frictional component of drag is reduced, and the shear layer developed along the cylinder surface tends to push the separation point away toward the rear stagnation point so that it has larger separation angle than that of the no‐slip condition. The length of the wake bubble zone was shortened by the combined effects of the reduced wall vorticity and wall shear stress which caused a shift of the reattachment point closer to the cylinder. The frequency of the asymmetrical vortex formation with partial slip velocity was increased due to the intrinsic inertial effect of the Navier‐slip condition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A semianalytical study of the creeping flow caused by a spherical fluid or solid particle with a slip surface translating in a viscous fluid within a spherical cavity along the line connecting their centers is presented in the quasisteady limit of small Reynolds number. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the fundamental solutions in the two spherical coordinate systems based on both the particle and cavity. The boundary conditions on the particle surface and cavity wall are satisfied by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are obtained with good convergence for various values of the ratio of particle-to-cavity radii, the relative distance between the centers of the particle and cavity, the relative viscosity or slip coefficient of the particle, and the slip coefficient of the cavity wall. In the limits of the motions of a spherical particle in a concentric cavity and near a cavity wall with a small curvature, our drag results are in good agreement with the available solutions in the literature. As expected, the boundary-corrected drag force exerted on the particle for all cases is a monotonic increasing function of the ratio of particle-to-cavity radii, and becomes infinite in the touching limit. For a specified ratio of particle-to-cavity radii, the drag force is minimal when the particle is situated at the cavity center and increases monotonically with its relative distance from the cavity center to infinity in the limit as it is located extremely away from the cavity center. The drag force acting on the particle, in general, increases with an increase in its relative viscosity or with a decrease in its slip coefficient for a given configuration, but surprisingly, there are exceptions when the ratio of particle-to-cavity radii is large.  相似文献   

8.
A model of laminar flow of a highly concentrated suspension is proposed. The model includes the equation of motion for the mixture as a whole and the transport equation for the particle concentration, taking into account a phase slip velocity. The suspension is treated as a Newtonian fluid with an effective viscosity depending on the local particle concentration. The pressure of the solid phase induced by particle-particle interactions and the hydrodynamic drag force with account of the hindering effect are described using empirical formulas. The partial-slip boundary condition for the mixture velocity on the wall models the formation of a slip layer near the wall. The model is validated against experimental data for rotational Couette flow, a plane-channel flow with neutrally buoyant particles, and a fully developed flow with heavy particles in a horizontal pipe. Based on the comparison with the experimental data, it is shown that the model predicts well the dependence of the pressure difference on the mixture velocity and satisfactorily describes the dependence of the delivered particle concentration on the flow velocity.  相似文献   

9.
The problem of the quasisteady motion of a spherical fluid or solid particle with a slip-flow surface in a viscous fluid perpendicular to two parallel plane walls at an arbitrary position between them is investigated theoretically in the limit of small Reynolds number. To solve the axisymmetric Stokes equation for the fluid velocity field, a general solution is constructed from the superposition of the fundamental solutions in both circular cylindrical and spherical coordinate systems. The boundary conditions are enforced first at the plane walls by the Hankel transform and then on the particle surface by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are obtained with good convergence for various values of the relative viscosity or slip coefficient of the particle and of the relative separation distances between the particle and the confining walls. For the motions of a spherical particle normal to a single plane wall and of a no-slip sphere perpendicular to two plane walls, our drag results are in good agreement with the available solutions in the literature for all relative particle-to-wall spacings. The boundary-corrected drag force acting on the particle in general increases with an increase in its relative viscosity or with a decrease in its slip coefficient for a given geometry, but there are exceptions. For a specified wall-to-wall spacing, the drag force is minimal when the particle is situated midway between the two plane walls and increases monotonically when it approaches either of the walls. The boundary effect on the particle motion normal to two plane walls is found to be significant and much stronger than that parallel to them.  相似文献   

10.
We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl–Kutta–Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d’Alembert’s paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15–20 for a small propeller plane at cruising speed with Reynolds number \({Re\approx 10^{7}}\) and a jumbojet at take-off and landing with \({Re\approx 10^{8}}\) , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier–Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for \({Re > 10^{6}}\) , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.  相似文献   

11.
A two‐dimensional lattice model has been developed to describe the influence of vegetation on the turbulent flow structure in an open channel. The model includes the influence of vegetation density on the frictional effect of the channel bed and walls. For the walls, a semi‐slip boundary condition has been considered as an alternative to overcome the no‐slip boundary condition limitations in turbulent flows. The drag stress exerted by the flow on the vegetation as well as the gravity effect has also been taken into account. The proposed lattice model has been used to simulate the experimental results reported from the study of the influence of alternate vegetated zones on the open‐channel flow. The results show that the lattice model approach is a valid tool for describing these kinds of flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Bikash Sahoo 《Meccanica》2010,45(3):319-330
The effects of partial slip on the steady flow and heat transfer of an electrically conducting, incompressible, third grade fluid past a horizontal plate subject to uniform suction and blowing is investigated. Two distinct heat transfer problems are studied. In the first case, the plate is assumed to be at a higher temperature than the fluid; and in the second case, the plate is assumed to be insulated. The momentum equation is characterized by a highly nonlinear boundary value problem in which the order of the differential equation exceeds the number of available boundary conditions. Numerical solutions for the governing nonlinear equations are obtained over the entire range of physical parameters. The effects of slip, magnetic parameter, non-Newtonian fluid characteristics on the velocity and temperature fields are discussed in detail and shown graphically. It is interesting to find that the velocity and the thermal boundary layers decrease with an increase in the slip, and as the slip increases to infinity, the flow behaves as though it were inviscid.  相似文献   

13.
Direct numerical simulations (DNS) of flow over triangular and rectangular riblets in a wide range of size and Reynolds number have been carried out. The flow within the grooves is directly resolved by exploiting the immersed-boundary method. It is found that the drag reduction property is primarily associated with the capability of inhibiting vertical velocity fluctuations at the plane of the crests, as in liquid-infused surfaces (LIS) devices. This is mimicked in DNS through artificial suppression of the vertical velocity component, which yields large drag decrease, proportionate to the riblets size. A parametrization of the drag reduction effect in terms of the vertical velocity variance is found to be quite successful in accounting for variation of the controlling parameters. A Moody-like friction diagram is thus introduced which incorporates the effect of slip velocity and a single, geometry-dependent parameter. Reduced drag-reduction efficiency of LIS-like riblets is found as compared to cases with artificially imposed slip velocity. Last, we find that simple wall models of riblets and LIS-like devices are unlikely to provide accurate prediction of the flow phenomenon, and direct resolution of flow within the grooves in necessary.  相似文献   

14.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

15.
The present article is concerned with the influence of turbulent gas-velocity fluctuations on both droplet dispersion and droplet-gas slip velocity in the context of spray simulation. The role of turbulence in generating slip and thus enhancing interphase heat and mass transfer has so far received little attention and is investigated in this work. A model for turbulent gas-velocity fluctuations along droplet trajectories is presented and is first tuned to reproduce elementary dispersion phenomena. It is then shown to give good results for more general dispersion problems as well as for slip velocities. As a fundamental source of information and for the purpose of model validation and comparison, direct numerical simulation (DNS) of droplet motion in homogeneous isotropic steady turbulence (HIST) is used. Dispersion of “injected” droplets (i.e. droplets under the influence of drift due to high injection velocity) as well as slip velocities for linear and nonlinear droplet drag are studied, and reasonable agreement is found with the model. The distributions of the slip velocity are found to be very similar for linear and highly nonlinear drag law. The present model is also used to investigate the influence of turbulence on droplet penetration. Comparison is made with an eddy-interaction model (the KIVA-2 model), which reveals various weaknesses of this model, in particular the underprediction of average slip velocity. The influence of slip due to turbulence on vaporization is shown for a fuel spray injected into a premix gas-turbine combustor. The classical eddy-interaction model is seen to underestimate the rate of vaporization due to the underprediction of slip. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
将光滑界面法引入到格子Boltzmann方法中分析粘弹性流体绕流问题,分别采用单松弛模型和对流扩散模型求解运动方程和Oldroyd-B本构方程,针对圆形和椭圆内部边界条件,给出连续界面插值函数,在此基础上,运用光滑界面法将内部边界转换为作用力项施加到演化方程中。首先分析圆柱绕流问题,给出不同材料参数情况下的流场分布和阻力系数计算结果,比较发现与宏观数值模拟结果相吻合。将模型拓展到绕椭圆流动中,分析椭圆形状和材料参数对粘弹性流体绕柱流的影响,发现随着椭圆长轴与短轴比值的增加和维森伯格数的增加,阻力系数逐渐下降,并且长短轴比对迭代收敛有较大影响。  相似文献   

17.
Flow through a channel whose walls are lined with non-erodible porous material is investigated using Beavers and Joseph slip boundary condition. It is shown that the effect of porous lining is to increase the mass flow rate and to decrease the friction factor.  相似文献   

18.
The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible,and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability,Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.  相似文献   

19.
The effects of a velocity slip and an external magnetic field on the flow of biomagnetic fluid(blood) through a stenosed bifurcated artery are investigated by using ANSYS FLUENT. Blood is regarded as a non-Newtonian power-law fluid, and the magnetization and electrical conductivity are considered in the mathematical model.The no-slip condition is replaced by the first-order slip condition. The slip boundary condition and magnetic force are compiled in the solver by the user-defined function(UDF)...  相似文献   

20.
We propose a resolution of d’Alembert’s Paradox comparing observation of substantial drag/lift in fluids with very small viscosity such as air and water, with the mathematical prediction of zero drag/lift of stationary irrotational solutions of the incompressible inviscid Euler equations, referred to as potential flow. We present analytical and computational evidence that (i) potential flow cannot be observed because it is illposed or unstable to perturbations, (ii) computed viscosity solutions of the Euler equations with slip boundary conditions initiated as potential flow, develop into turbulent solutions which are wellposed with respect to drag/lift and which show substantial drag/lift, in accordance with observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号