首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hidden symmetries of differential equations are point symmetries that arise unexpectedly in the increase (equivalently decrease) of order, in the case of ordinary differential equations, and variables, in the case of partial differential equations. The origins of Type II hidden symmetries (obtained via reduction) for ordinary differential equations are understood to be either contact or nonlocal symmetries of the original equation while the origin for Type I hidden symmetries (obtained via increase of order) is understood to be nonlocal symmetries of the original equation. Thus far, it has been shown that the origin of hidden symmetries for partial differential equations is point symmetries of another partial differential equation of the same order as the original equation. Here we show that hidden symmetries can arise from contact and nonlocal/potential symmetries of the original equation, similar to the situation for ordinary differential equations.  相似文献   

2.
The Type-II hidden symmetries are extra symmetries in addition to the inherited symmetries of the differential equations when the number of independent and dependent variables is reduced by a Lie point symmetry. In [B. Abraham-Shrauner, K.S. Govinder, Provenance of Type II hidden symmetries from nonlinear partial differential equations, J. Nonlinear Math. Phys. 13 (2006) 612-622] Abraham-Shrauner and Govinder have analyzed the provenance of this kind of symmetries and they developed two methods for determining the source of these hidden symmetries. The Lie point symmetries of a model equation and the two-dimensional Burgers' equation and their descendants were used to identify the hidden symmetries. In this paper we analyze the connection between one of their methods and the weak symmetries of the partial differential equation in order to determine the source of these hidden symmetries. We have considered the same models presented in [B. Abraham-Shrauner, K.S. Govinder, Provenance of Type II hidden symmetries from nonlinear partial differential equations, J. Nonlinear Math. Phys. 13 (2006) 612-622], as well as the WDVV equations of associativity in two-dimensional topological field theory which reduces, in the case of three fields, to a single third order equation of Monge-Ampère type. We have also studied a second order linear partial differential equation in which the number of independent variables cannot be reduced by using Lie symmetries, however when is reduced by using nonclassical symmetries the reduced partial differential equation gains Lie symmetries.  相似文献   

3.
We develop a generalized conditional symmetry approach for the functional separation of variables in a nonlinear wave equation with a nonlinear wave speed. We use it to obtain a number of new (1+1)-dimensional nonlinear wave equations with variable wave speeds admitting a functionally separable solution. As a consequence, we obtain exact solutions of the resulting equations.  相似文献   

4.
One of the more interesting solutions of the (2+1)-dimensional integrable Schwarz–Korteweg–de Vries (SKdV) equation is the soliton solutions. We previously derived a complete group classification for the SKdV equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on the form of an arbitrary function. The corresponding solutions of the (2+1)-dimensional equation involve up to three arbitrary smooth functions. Consequently, the solutions exhibit a rich variety of qualitative behaviors. In particular, we show the interaction of a Wadati soliton with a line soliton. Moreover, via a Miura transformation, the SKdV is closely related to the Ablowitz–Kaup–Newell–Segur (AKNS) equation in 2+1 dimensions. Using classical Lie symmetries, we consider traveling-wave reductions for the AKNS equation in 2+1 dimensions. It is interesting that neither of the (2+1)-dimensional integrable systems considered admit Virasoro-type subalgebras.  相似文献   

5.
We use the classical and nonclassical methods to obtain symmetry reductions and exact solutions of the (2+1)-dimensional integrable Calogero–Bogoyavlenskii–Schiff equation. Although this (2+1)-dimensional equation arises in a nonlocal form, it can be written as a system of differential equations and, in potential form, as a fourth-order partial differential equation. The classical and nonclassical methods yield some exact solutions of the (2+1)-dimensional equation that involve several arbitrary functions and hence exhibit a rich variety of qualitative behavior.  相似文献   

6.
Exact solutions of KdV equation with time-dependent coefficients   总被引:1,自引:0,他引:1  
In this paper, we study the Korteweg-de Vries (KdV) equation having time dependent coefficients from the Lie symmetry point of view. We obtain Lie point symmetries admitted by the equation for various forms for the time-dependent coefficients. We use the symmetries to construct the group-invariant solutions for each of the cases of the arbitrary coefficients. Subsequently, the 1-soliton solution is obtained by the aid of solitary wave ansatz method. It is observed that the soliton solution will exist provided that these time-dependent coefficients are all Riemann integrable.  相似文献   

7.
Soliton solutions are among the more interesting solutions of the (2+1)-dimensional integrable Calogero-Degasperis-Fokas (CDF) equation. We previously derived a complete group classiffication for the CDF equation in 2+1 dimensions. Using classical Lie symmetries, we now consider traveling-wave reductions with a variable velocity depending on an arbitrary function. The corresponding solutions of the (2+1)-dimensional equation involve up to three arbitrary smooth functions. The solutions consequently exhibit a rich variety of qualitative behaviors. Choosing the arbitrary functions appropriately, we exhibit solitary waves and bound states.__________Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 1, pp. 44–55, July, 2005.  相似文献   

8.
We consider partial differential equations of variational problems with infinite symmetry groups. We study local conservation laws associated with arbitrary functions of one variable in the group generators. We show that only symmetries with arbitrary functions of dependent variables lead to an infinite number of conservation laws. We also calculate local conservation laws for the potential Zabolotskaya-Khokhlov equation for one of its infinite subgroups.__________Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 1, pp. 190–198, July, 2005.  相似文献   

9.
We show how one can construct approximate conservation laws of approximate Euler-type equations via approximate Noether-type symmetry operators associated with partial Lagrangians. The ideas of the procedure for a system of unperturbed partial differential equations are extended to a system of perturbed or approximate partial differential equations. These approximate Noether-type symmetry operators do not form a Lie algebra in general. The theory is applied to the perturbed linear and nonlinear (1+1) wave equations and the Maxwellian tails equation. We have also obtained new approximate conservation laws for these equations.  相似文献   

10.
It is shown how to derive master symmetries for nonlinear lattice equations systematically using the basic principles but without using either their zero curvature equations or the bi-Hamiltonian structure. This has been illustrated for Volterra equation, two coupled Belov–Chaltikian (BC), and three coupled Blaszak–Marciniak (BM) lattice equations. The existence of a sequence of master symmetries is one of the characteristics of completely integrable nonlinear partial differential and differential–difference equations admitting Hamiltonian structure.  相似文献   

11.
An approach for determining a class of master partial differential equations from which Type II hidden point symmetries are inherited is presented. As an example a model nonlinear partial differential equation (PDE) reduced to a target PDE by a Lie symmetry gains a Lie point symmetry that is not inherited (hidden) from the original PDE. On the other hand this Type II hidden symmetry is inherited from one or more of the class of master PDEs. The class of master PDEs is determined by the hidden symmetry reverse method. The reverse method is extended to determine symmetries of the master PDEs that are not inherited. We indicate why such methods are necessary to determine the genesis of Type II symmetries of PDEs as opposed to those that arise in ordinary differential equations (ODEs).  相似文献   

12.
A manifold that contains small perturbations will induce a perturbed partial differential equation. The partial differential equation that we select is the Poisson equation – in order to explore the interplay between the geometry of the manifold and the perturbations. Specifically, we show how the problem of symmetry determination, for higher-order perturbations, can be elegantly expressed via geometric conditions.  相似文献   

13.
The complete symmetry group of an 1+1 evolution equation of maximal symmetry has been demonstrated to be represented by the six-dimensional Lie algebra of point symmetries sl(2,R)sW, where W is the three-dimensional Heisenberg-Weyl algebra. We construct a complete symmetry group of a 1+2 evolution equation ut=(Fy(u)ux) for some functions F using the point symmetries admitted by the equation. The 1+2 equation is not completely specifiable by point symmetries alone for some specific functions F. We make use of Ansätze already reported by Myeni and Leach [S.M. Myeni, P.G.L. Leach, Nonlocal symmetries and complete symmetry groups of evolution equations, J. Nonlinear Math. Phys. 13 (2006) 377-392] which provide a route to the determination of the required generic nonlocal symmetries necessary to supplement the point symmetries for the complete specification of these 1+2 evolution equations. Further we find that taking some suitable linear combination of Lie point symmetries helps to optimise the procedure of specifying the equation. A general result concerning the number of symmetries required to form a complete symmetry group of evolution is presented in the Conclusion.  相似文献   

14.
This paper studies the solution of the Kadomtsev–Petviasvili equation with power law nonlinearity in 1+3 dimensions. The Lie symmetry approach as well as the extended tanh‐function and G′/G methods are used to carry out the analysis. Subsequently, the soliton solution is obtained for this equation with power law nonlinearity. Both topological as well as non‐topological solitons are obtained for this equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The problem of symmetry classification for the heat equation on torus is studied by means of classical Lie group theory. The Lie point symmetries are constructed and Lie algebra is formed for equation under consideration. Then these algebras are used to classify its subalgebras up to conjugacy classes. In general the heat equation on torus admits one-, two-, three- and four-dimensional algebras. For one-dimensional algebra £1 and £2 the heat equation on torus is reduced in independent variables whereas in two-dimensional algebras £3 and £4 the considered heat equation is investigated by quadrature. While three- and four-dimensional algebras lead to a trivial solution.  相似文献   

16.
In this paper, we show that for a class of nonlinear partial differential equations with arbitrary order the determining equations for the nonclassical reduction can be obtained by requiring the compatibility between the original equation and the invariant surface condition. The nonlinear wave equation and the Boussinesq equation all serve as examples illustrating this fact.  相似文献   

17.
We consider a generalized Fisher equation involving tumor development from the point of view of the theory of symmetry reductions in partial differential equations. The study of this equation is relevant as it includes generalizations within the proliferation rate, being interpreted in terms of the total mass of the tumor. Classical Lie point symmetries admitted by the equation are determined. Finally, we obtain some biologically meaningful solutions in terms of a hyperbolic tangent function, which describes the tumor dynamics.  相似文献   

18.
We show that the group classification results of the article entitled “Group analysis of KdV equation with time dependent coefficients” which appeared in [A.G. Johnpillai, M.C. Khalique, Group analysis of KdV equation with time dependent coefficients, Appl. Math. Comput. 216 (2010) 3761-3771] can be obtained from those of a more general class by a change of variables.  相似文献   

19.
Classical reductions of a (2+1)-dimensional integrable Schwarz–Korteweg–de Vries equation are classified. These reductions to systems of partial differential equations in 1+1 dimensions admit symmetries that lead to further reductions, i.e., to systems of ordinary differential equations. All these systems have been reduced to second-order ordinary differential equations. We present some particular solutions involving two arbitrary functions.  相似文献   

20.
The μ‐Camassa‐Holm equation with linear dispersion is a completely integrable model. In this paper, it is shown that this equation has quadratic pseudo‐potentials that allow us to construct pseudo‐potential–type nonlocal symmetries. As an application, we obtain its recursion operator by using this kind of nonlocal symmetry, and we construct a Darboux transformation for the μ‐Camassa‐Holm equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号