首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A new three-dimensional (3-D) viscous aeroelastic solver for nonlinear panel flutter is developed in this paper. A well-validated full Navier–Stokes code is coupled with a finite-difference procedure for the von Karman plate equations. A subiteration strategy is employed to eliminate lagging errors between the fluid and structural solvers. This approach eliminates the need for the development of a specialized, tightly coupled algorithm for the fluid/structure interaction problem. The new computational scheme is applied to the solution of inviscid two-dimensional panel flutter problems for subsonic and supersonic Mach numbers. Supersonic results are shown to be consistent with the work of previous researchers. Multiple solutions at subsonic Mach numbers are discussed. Viscous effects are shown to raise the flutter dynamic pressure for the supersonic case. For the subsonic viscous case, a different type of flutter behavior occurs for the downward deflected solution with oscillations occurring about a mean deflected position of the panel. This flutter phenomenon results from a true fluid/structure interaction between the flexible panel and the viscous flow above the surface. Initial computations have also been performed for inviscid, 3-D panel flutter for both supersonic and subsonic Mach numbers.  相似文献   

2.
The separation and shock wave formation on the aft-body of a hypersonic adiabatic circular cylinder were studied numerically using the open source software OpenFOAM. The simulations of laminar flow were performed over a range of Reynolds numbers (\(8\times 10^3 < Re < 8\times 10^4\)) at a free-stream Mach number of 5.9. Off-body viscous forces were isolated by controlling the wall boundary condition. It was observed that the off-body viscous forces play a dominant role compared to the boundary layer in displacement of the interaction onset in response to a change in Reynolds number. A modified free-interaction equation and correlation parameter has been presented which accounts for wall curvature effects on the interaction. The free-interaction equation was manipulated to isolate the contribution of the viscous–inviscid interaction to the overall pressure rise and shock formation. Using these equations coupled with high-quality simulation data, the underlying mechanisms resulting in Reynolds number dependence of the lip-shock formation were investigated. A constant value for the interaction parameter representing the part of the pressure rise due to viscous–inviscid interaction has been observed at separation over a wide range of Reynolds numbers. The effect of curvature has been shown to be the primary contributor to the Reynolds number dependence of the free-interaction mechanism at separation. The observations in this work have been discussed here to create a thorough analysis of the Reynolds number-dependent nature of the lip-shock.  相似文献   

3.
S. Mowatt  B. Skews 《Shock Waves》2011,21(5):467-482
An investigation into a three-dimensional, curved shock wave interacting with a three-dimensional, curved boundary layer on a slender body is presented. Three different nose profiles mounted on a cylindrical body were tested in a supersonic wind tunnel and numerically simulated by solving the Navier–Stokes equations. The conical and hemispherical nose profiles tested were found to generate shock waves of sufficient strength to separate the boundary layer on the cylinder, while the shock wave generated by the ogival profile did not separate the boundary layer. For the separated flow, separation was found to occur predominantly on the windward side of the cylinder with the lee-side remaining shielded from the direct impact of the incident shock wave. A thickening of the boundary layer on the lee-side of all the profiles was observed, and in the conical and hemispherical cases this leads to the re-formation of the incident shock wave some distance away from the surface of the cylinder. A complex reflection pattern off the shock wave/boundary layer interaction (SWBLI) was also identified for the separated flow cases. For comparative purposes, an inviscid simulation was performed using the hemispherical profile. Significant differences between the viscous and inviscid results were noted including the absence of a boundary layer leading to a simplified shock wave reflection pattern forming. The behaviour of the incident shock wave on the lee-side of the cylinder was also affected with the shock wave amalgamating on the surface of the cylinder instead of away from the surface as per the viscous case. Test data from the wind tunnel identified two separation lines present on the cylindrical surface of the hemispherical SWBLI generator. The pair of lines were not explicitly evident in the original CFD simulations run, but were later identified in a high-resolution simulation.  相似文献   

4.
In this paper, the shock pattern oscillations induced by shock/shock interactions over double-wedge geometries in hypersonic flows were studied numerically by solving 2D inviscid Euler equations for a multi-species system. Laminar viscous effects were considered in some cases. Temperature-dependent thermodynamic properties were employed in the state and energy equations for consideration of the distinct change of the thermodynamic state. It was shown that the oscillation results in high-frequency fluctuations of heating and pressure loads over wedge surfaces. In a case with a relatively lower free-stream Mach number, the shock/shock interaction structure maintains a seven-shock configuration during the entire oscillation process. On the other hand, the oscillation is accompanied by a transition between a six-shock configuration (regular interaction) and a seven-shock configuration (Mach interaction) in a case with a higher free-stream Mach number. Numerical results also indicate that the critical wedge angle for the transition from a steady to an oscillation solution is higher compared to the corresponding value in earlier numerical research in which the perfect diatomic gas model was used.   相似文献   

5.
High-Velocity Laminar and Turbulent Flow in Porous Media   总被引:1,自引:0,他引:1  
We model high-velocity flow in porous media with the multiple scale homogenization technique and basic fluid mechanics. Momentum and mechanical energy theorems are derived. In idealized porous media inviscid irrotational flow in the pores and wall boundary layers give a pressure loss with a power of 3/2 in average velocity. This model has support from flow in simple model media. In complex media the flow separates from the solid surface. Pressure loss effects of flow separation, wall and free shear layers, pressure drag, flow tube velocity and developing flow are discussed by using phenomenological arguments. We propose that the square pressure loss in the laminar Forchheimer equation is caused by development of strong localized dissipation zones around flow separation, that is, in the viscous boundary layer in triple decks. For turbulent flow, the resulting pressure loss due to average dissipation is a power 2 term in velocity.  相似文献   

6.
A numerical study is conducted to simulate the effects of extraneous shock impingement on a blunt body in viscous hypersonic flow. The interaction of extraneous shock with the leading-edge shock results in a very complex flow field that contains local regions of high pressure and intense heating. The heating and pressure can be orders of magnitude higher than the peak values in the absence of shock impingement. The flow field is calculated by solving thin-layer Navier-Stokes equations with a finite-volume flux splitting technique developed by van Leer. For a zero or small sweep of the body, a type IV interaction occurs, which produces a lambda shock structure with a supersonic jet embedded in the otherwise subsonic flow; for a moderate sweep of about 25°, a type V interaction occurs in which a subsonic shear layer sandwiched in supersonic flow is produced with a transmitted shock. In the present study, both type IV and type V interactions are investigated. Results of the present numerical investigation are compared with available experimental results. For the present conditions, the peak pressure is 2.2 times the unimpinged stagnation point pressure and the peak heating is 3 times the unimpinged stagnation point heating. The flow for a type IV interaction is found to be unsteady.  相似文献   

7.
The non-linear problem of cavity flow past a hydrofoil is considered with taking into account fluid viscosity in the cavity closure region and surface tension, which affect the cavity detachment. The theoretical model is based on the concept of viscous–inviscid interaction between the outer inviscid cavity flow and the inner turbulent separated flow downstream of the cavity. The outer inviscid flow is solved by constructing the complex flow potential, and the wake model is based on the method of integral relationships for separated turbulent flows. The obtained numerical results are compared with experimental data.  相似文献   

8.
A numerical study of the interaction of plane blast waves with a cylinder is presented. Computations are carried out for various blast-wave durations and comparisons are obtained with the corresponding results of planar shock-wave. Both inviscid and viscous results based on the solution of the Euler and Navier-Stokes equations are presented. The equations are solved by an adaptive-grid method and a second-order Godunov scheme. The shock wave diffraction over the cylinder is investigated by means of various contour plots, as well as, pressure and skin-friction histories. The study reveals that the blast-wave duration significantly influences the unsteady flow over the cylinder. The differences between the viscous and inviscid results are also discussed. Received 2 March 1996 / Accepted 28 February 1997  相似文献   

9.
An upwind finite element technique that uses cell-centred quantities and implicit and/or explicit time marching has been developed for computing hypersonic laminar viscous flows using adaptive triangular grids. The approach is an extension to unstructured grids of the LAURA algorithm due to Gnoffo. A structured grid of quadrilaterals is laid out near a solid surface. For inviscid flows the method is stable at Courant numbers of over 100000. A first-order basic scheme and a higher-order flux-corrected transport (FCT) scheme have been implemented. This technique has been applied to the problem of predicting type III and IV shock wave interactions on a cylinder, with a view to simulating the pressure and heating rate augmentation caused by an impinging shock on the leading edge of a cowl lip of an engine inlet. The predictions of wall pressure and heating rates compare very well with experimental data. The flow features are distinctly captured with a sequence of adaptively generated grids.  相似文献   

10.
Some characteristics of the variation in the linear dimensions of the flow separation zones on conical bodies with expanding conical skirts and of variation of the pressure within these zones as a function of variation of the Mach number, Reynolds number, and intensity of the disturbance that causes the boundary layer separation are examined. Experiments were conducted in laminar, transitional, and turbulent flows in flow separation regions. The interaction of viscous and nearly inviscid flows is quite common. This phenomenon occurs in flow past a concave corner, when a compression shock impinges on a boundary layer, and in many other cases. The characteristics of this phenomenon in flow about two-dimensional bodies have been investigated experimentally in [1, 2] and other studies. Attempts have been made to analyze the interaction of compression shocks with the boundary layer theoretically. In “free” separated flows, when the points of separation and reattachment of the boundary layer are not fixed (for example, on a flat plate with a long wedge attached to it), theoretical studies are usually made within the framework of the boundary layer theory with use of the approximate integral methods [3, 4]. In this article we examine some results from studies of free separated flows on conical bodies with conical skirts in laminar, transitional, and turbulent flows (Fig. 1).  相似文献   

11.
The development of inviscid and viscous flow solvers for both structured and unstructured meshes is presented in this paper. The solution method is the distribution-formula scheme. This is an explicit, cell-vertex, finite volume method which is essentially second-order accurate in both space and time. The Euler and Navier-Stokes equations are integrated over each finite volume cell to determine the change in flow properties (e.g. density) for the cell. Distribution formulas are then used to distribute such changes to the surrounding vertices. Increments in each vertex (which is a calculation point) thus consist of contributions from the surrounding cells. The original discretization technique involves central differencing and is simple, robust and computationally efficient. In this work, starting with inviscid flow simulations using the original scheme on structured grids, improvements are subsequently made to the scheme by replacing the central differencing portion with MUSCL type higher-order upwind differencing. Numerical investigations with the improved scheme are performed using inviscid flow simulations on structured grids. Upon establishing improved accuracy, stability and excellent shock capturing properties, further extension to viscous flow computations on unstructured adaptive meshes is implemented. Results are presented for laminar, viscous flow over a NACA 0012 airfoil.  相似文献   

12.
Problems of the deceleration of a supersonic conducting flow by a magnetic field are investigated. A conducting gas flow in a circular tube is considered in the presence of an axisymmetric magnetic field induced by a unit current loop or solenoid of finite length. The analysis is carried out on the basis of both the Euler equations (inviscid gas) and the complete system of Navier-Stokes equations for laminar viscous gas flow and turbulent flow using a one-parameter turbulence model. The numerical simulation is based on an implicit relaxation finite-difference scheme which is a modification of the Godunov method. The total pressure losses are determined for various values of the magnetohydrodynamic (MHD) interaction, the initial Mach number, and different magnetic field geometries and it is shown that the irreversible losses are significant in MHD supersonic flow deceleration.  相似文献   

13.
The prediction of the aerodynamic performance of pitching airfoils in stall conditions is considered in the context of strong viscous–inviscid interaction modelling. The aim of the work is to demonstrate the capabilities of a low‐cost dynamic stall model well suited for engineering applications. The model is formulated on the basis of a standard panel method combined with a vortex blob approximation of the wake. The development of the boundary layer over the airfoil and the evolution of the shear layer in the wake are taken into account by means of strong viscous–inviscid interaction coupling. To this end a transpiration layer is added to the inviscid formulation which represents the displacement effect viscosity results in the flow while the non‐linear coupled equations are solved simultaneously. Separation is modelled by introducing a second wake originating from the separation point (‘double‐wake’ concept) which is provided as part of the boundary layer solution. The theoretical presentation of the model is supported with favourable comparisons to four sets of wind tunnel measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Here we consider the stability of flow along a streamwise corner formed by the intersection of two large flat plates held perpendicular to each other. Self-similar solutions for the steady laminar mean flow in the corner region have been obtained by solving the boundary layer equations for zero and nonzero streamwise pressure gradients. The stability of the mean flow is investigated using linear stability analysis. An eigensolver has been developed to solve the resulting linear eigenvalue problem either in a global mode to obtain an approximation to all the dominant eigenmodes or in a local mode to refine a particular eigenmode. The stability results indicate that the entire spectrum of two-dimensional and oblique viscous modes of a two-dimensional Blasius boundary layer is active in the case of a corner layer as well, but away from the cornerline. In a corner region of finite spanwise extent, the continuous spectrum of oblique modes degenerates to a discrete spectrum of modes of increasing spanwise wave number. The effect of the corner on the two-dimensional viscous instability is small and decreases the growth rate. The growth rate of outgoing oblique disturbances is observed to decrease, while the growth rate of incoming oblique disturbances is enhanced by the corner. This asymmetry between the outgoing and incoming viscous modes increases with increasing obliqueness of the disturbance. The instability of a zero pressure gradient corner layer is dominated by the viscous modes; however, an inviscid corner mode is also observed. The critical Reynolds number of the inviscid mode rapidly decreases with even a small adverse streamwise pressure gradient and the inviscid mode becomes the dominant one. Received 17 March 1998 and accepted 28 April 1999  相似文献   

15.
This paper presents several numerical results using a vectorized version of a 3D finite element compressible and nearly incompressible Euler and Navier–Stokes code. The assumptions were set on laminar flows and Newtonian fluids. The goal of this research is to show the capabilities of the present code to treat a wide range of problems appearing in laminar fluid dynamics towards the unification from incompressible to compressible and from inviscid to viscous flow codes. Several authors with different approaches have tried to attain this target in CFD with relative success. At the beginning the methods based on operator splitting and perturbation were preferred, but lately, with the wide usage of time-marching algorithms, the preconditioning mass matrix (PMM) has become very popular. With this kind of relaxation scheme it is possible to accelerate the rate of convergence to steady state solutions with the modification of the mass matrix under certain restrictions. The selection of the mass matrix is not an easy task, but we have certain freedom to define it in order to improve the condition number of the system. In this paper we have used a physics-based preconditioner for the GMRES implicit solver developed previously by us and an SUPG formulation for the semidiscretization of the spatial operator. In sections 2 and 3 we present some theoretical aspects related to the physical problem and the mathematical model, showing the inviscid and viscous flow equations to be solved and the variational formulation involved in the finite element analysis. Section 4 deals with the numerical solution of non-linear systems of equations, with some emphasis on the preconditioned matrix-free GMRES solver. Section 5 shows how boundary conditions were treated for both Euler and Navier–Stokes problems. Section 6 contains some aspects about vectorization on the Cray C90. The performance reached by this implementation is close to 1 Gflop using multitasking. Section 7 presents several numerical examples for both models covering a wide range of interesting problems, such as inviscid low subsonic, transonic and supersonic regimes and viscous problems with interaction between boundary layers and shock waves in either attached or separated flows. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
高智 《力学学报》1990,22(1):9-19
对不可压缩层流二维干扰流动,本文提出一个干扰流动(IF)理论。IF理论要点为:1)干扰流动沿主流的法向被分为三层即粘性层、干扰层和无粘层,引进了法向动量交换为主导过程的干扰层概念。2)利用力学守恒律、三层匹配关系及文中引进的干扰模型,把三层的空间尺度及惯性-粘性诸力的数置级表示为单参数m的函数,m<1/2·3)导出描述各层流动的控制方程、导出描述全城流动的控制方程为简化Navie-Stokes(SNS)方程。IF理论适用于不存在分离的附着干扰流动以及存在分离的大范围干扰流动,经典边界层(CBL)理论和流动分离局部区域Triple-Deck(TD)理论分别是本文理论在参数m=O和1/4时的两个特例,本文理论容易推广到可压缩、三维及湍流流动。  相似文献   

17.
Tangential discontinuities [1] are introduced in solving several transient and steady-state problems of gas dynamics. These discontinuities are unstable [2] as a result of the effects of viscosity and thermal conductivity. Therefore it is advisable to replace the tangential discontinuity by a mixing region and account for its interaction with the inviscid flows, establishing on the boundaries of this region the conditions of vanishing friction stress and equality of the velocity and temperature components to the corresponding velocity and temperature components of the inviscid flows. This formulation improves the accuracy of the solution of such problems by posing them as problems with irregular reflection and intersection of shock waves [1].The consideration of the interaction of unsteady turbulent mixing regions with the inviscid flow also permits the formulation of several problems in which the effects of viscosity lead to complete rearrangement of the flow pattern (the lambda-configuration) with the interaction of the reflected shock wave with the boundary layer in the shock tube [3,4], the formation of zones of developed separation ahead of obstacles, etc.).In this connection, §1 presents an analysis of the self-similar solutions of the unsteady turbulent mixing equations (a corresponding analysis of the laminar mixing equations which coincide with the boundary layer equations is presented in [1]). It is shown that these self-similar solutions describe, along with the several problems noted above, the problems of the formation of steady jets and mixing zones in the base wake.As an example, §2 presents, within the framework of the proposed schematization, an approximate solution of the problem of the interaction of a shock wave reflected from a semi-infinite wall with the boundary layer on a horizontal plate behind the incident shock wave. The results obtained are applied to the analysis of reflection in a shock tube. Computational results are presented which are in qualitative agreement with experiment [3, 4].  相似文献   

18.
Dexun  Fu  Yanwen  Ma 《Acta Mechanica Sinica》1986,2(2):100-108
A new scheme for solving the compressible Navier-Stokes equations is developed. For the inviscid portion of the equations the single step scheme used by the authors is factored according to the sign of the eigenvalues of Jacobian matrix. For the viscous portion of the equations a scheme corrected with operator addition is factored too. The scheme obtained has second order accuracy in time and in space and is used to solve two-dimensional problem. The numerical results of 2-D shock wave-boundary layer interaction are compared with experimental data.  相似文献   

19.
低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究   总被引:1,自引:0,他引:1  
刘强  刘周  白鹏  李锋 《力学学报》2016,48(2):269-277
针对低雷诺数(Re)翼型气动性能差的特点,文章通过对翼型柔性蒙皮施加主动振动的方法,提高翼型低Re下的气动特性,改善其流场结构.采用带预处理技术的Roe方法求解非定常可压缩Navier-Stokes方程,对NACA4415翼型低Re流动展开数值模拟.通过时均化和非定常方法对比柔性蒙皮固定和振动两种状态下的升阻力气动特性和层流分离流动结构.初步研究工作表明在低Re下柔性蒙皮采用合适的振幅和频率,时均化升阻力特性显著提高,分离泡结构由后缘层流分离泡转变为近似的经典长层流分离泡,分离点后移,分离区缩小.在此基础上,文章更加细致研究了柔性蒙皮两种状态下单周期内的层流分离结构及壁面压力系数分布非定常特性和演化规律.蒙皮固定状态下分离区前部流场结构和压力分布基本保持稳定,表现为近似定常分离,仅在后缘位置出现类似于卡门涡街的非定常流动现象.柔性蒙皮振动时从分离点附近开始便产生分离涡,并不断向下游移动、脱落,表现为非定常分离并出现大范围的压力脉动.蒙皮振动使流体更加靠近壁面运动,大尺度的层流分离现象得到有效抑制.   相似文献   

20.
Physical situations where a viscous boundary layer breaks down and interacts strongly with an effectively inviscid external flow are common place. For large Reynolds numbers, viscous effects are normally confined to thin boundary layers on all solid surfaces for the majority of any observation time. In most practical situations, exposure of such layers to an adverse pressure gradient is inevitable and in this circumstance, a sequence of events commences near the wall that culminates in an eruption and a strong viscous-inviscid interaction with the external flow. The events leading up to eruption are known as the Van Dommelen–Shen process and the eruption itself is referred to as boundary-layer separation; here the term ‘separation’ denotes the first process of interaction between a hitherto thin boundary layer and the external flow. The event is sufficiently complicated that extraordinary measures are needed to compute its evolution. In most situations, the onset of separation is subtle and hard to detect and thus development of rational control procedures is a challenging task. Here recent calculations of unsteady separation events are discussed for two- and three-dimensional flows. The phenomena involved are generic but leading-edge separation on airfoils and rotorcraft blades is emphasized. Recent studies on various control mechanisms are described, which are found to have the effect of slowing down and/or weakening the separation process. For some control processes, it has proved possible to eliminate separation entirely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号