首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化学反应的手性诱导一直备受化学家的关注,虽然不对称热化学合成和手性技术已经取得了巨大的进展,但不对称光化学反应的研究远远没有取得相应的成功.激发态寿命短、活化能低是导致其对映选择性低的主要原因.最新的研究表明,采用含手性空间或经手性修饰的微环境可以使光化学反应的立体选择性大大提高.本文针对这一热点问题,综述在微反应器中进行不对称光化学反应的研究进展.  相似文献   

2.
Asymmetric photochemical synthesis using circularly polarized (CP) light is theoretically attractive as a means of absolute asymmetric synthesis and postulated as an explanation for homochirality on Earth. Using an asymmetric photochemical synthesis of a dihydrohelicene as an example, we demonstrate the principle that two wavelengths of CP light can be used to control separate reactions. In doing so, a photostationary state (PSS) is set up in such a way that the enantiomeric induction intrinsic to each step can combine additively, significantly increasing the asymmetric induction possible in these reactions. Moreover, we show that the effects of this dual wavelength approach can be accurately determined by kinetic modelling of the PSS. Finally, by coupling a PSS to a thermal reaction to trap the photoproduct, we demonstrate that higher enantioselectivity can be achieved than that obtainable with single wavelength irradiation, without compromising the yield of the final product.  相似文献   

3.
The ionic chiral auxiliary approach to asymmetric photochemical synthesis discovered by the Scheffer group has been successfully applied to many reactions in the solid state. Enantiomeric excesses of up to 99 % were obtained using this method. After a brief introduction of absolute asymmetric synthesis, chirally modified zeolites and host–guest assemblies in asymmetric photochemistry, the bulk of this review will summarize and discuss the application of the solid state ionic chiral auxiliary technique to the Norrish type II reaction, the di‐π‐methane photorearrangement, and to a novel retro‐Claisen photorearrangement.  相似文献   

4.
Micro-flow photochemical reactions have great advantage over batch photochemical reactions due to its high light-penetration efficiency. Integrated micro-flow reaction enables efficient synthesis of structurally complex compounds from simple starting materials and it can avoid handling of explosive, toxic, unstable, or odorous intermediates. Combination of micro-flow photochemical reactions with integrated micro-flow synthesis enhances their benefits. Here we summarize recently reported integrated multi-step micro-flow synthesis containing various photochemical reactions.  相似文献   

5.
Photochemical reactions contribute in a significant way to the existing repertoire of carbon-carbon bond-forming reactions by allowing access to exceptional molecular structures that cannot be obtained by conventional means. In this Review, the most important photochemical transformations that have been employed in natural product synthesis are presented. Selected total syntheses are discussed as examples, with particular attention given to the photochemical key step and its stereoselectivity. The structural relationship between the photochemically generated molecule and the natural product is shown, and, where necessary, the consecutive reactions in the synthesis are illustrated and classified.  相似文献   

6.
Navjeet Kaur 《合成通讯》2013,43(22):2815-2849
Photochemical reactions have been applied for the synthesis of complex targets in many examples recently. In many cases, these processes provide access to unique modes of reactivity or offer unrivaled increases in molecular complexity. The key-features of photochemical reactions include increased selectivity, conversion, and yield and are beneficial for industrial and “green” processes. Despite these advantages, however, photochemical reactions in chemical production or R and D processes are rare. Most technical processes are limited to commodity chemicals and have been developed decades ago. The application of photochemical reactions for the synthesis of fine chemicals, natural products, and pharmaceutically active compounds, has become very popular. Photochemical reactions are used for organic synthesis and this review article highlighted the syntheses of heterocycles. Photochemistry is particularly fascinating and afforded an exotic charm due to its unconventional nature. In this review, I have given a clear idea of applicability of photochemical irradiations for the synthesis of a number of seven and higher membered N-heterocycles.  相似文献   

7.
Visible light has been recognized as an economical and environmentally benign source of energy that enables chemoselective molecular activation of chemical reactions and hence reveal a new horizon for the design and discovery of novel chemical transformations. On the other hand, asymmetric catalysis represents an economic method to satisfy the increasing need for enantioenriched compounds in the chemical and pharmaceutical industries. Therefore, combining visible light photocatalysis with asymmetric catalysis creates a wider range of opportunities for the development of mechanistically unique reaction schemes. However, there arise two main problems like undesirable photochemical background reactions and difficulties in controlling the stereochemistry with highly reactive photochemical intermediates which can pose a serious challenge to the development of asymmetric visible light photocatalysis. In recent years, several methods have been developed to overcome these challenges. This review summarizes the recent advances in visible light‐induced enantioselective reactions. We divide our discussion into four categories: Asymmetric photoredox organocatalysis, asymmetric transition metal photoredox catalysis, asymmetric photoredox Lewis acid catalysis and asymmetric photoinduced energy transfer catalysis. Special emphasis has been given to different catalytic activation modes that enable the construction of challenging carbon‐carbon and carbon‐heteroatom bond in an enantioselective fashion. A brief analysis of substrate scope and limitation as well as reaction mechanism of these reactions has been included.  相似文献   

8.
Circularly polarized light (CPL) is known to be a true chiral entity capable of generating absolute molecular asymmetry. However, the degree of inducible optical activity depends on the λ of the incident CPL. Exposure of amorphous films of rac‐alanine to tunable CPL led to enantiomeric excesses (ee) which not only follow the helicity but also the energy of driving electromagnetic radiation. Postirradiation analyses using enantioselective multidimensional GC revealed energy‐controlled ee values of up to 4.2 %, which correlate with theoretical predictions based on newly recorded anisotropy spectra g(λ). The tunability of asymmetric photochemical induction implies that both magnitude and sign can be fully controlled by CPL. Such stereocontrol provides novel insights into the wavelength and polarization dependence of asymmetric photochemical reactions and are highly relevant for absolute asymmetric molecular synthesis and for understanding the origins of homochirality in living matter.  相似文献   

9.
提高化学反应的选择性始终是化学家关注的热点. 本工作以光Fries重排反应、Norrish/Yang光环化反应、9-取代蒽衍生物的光二聚反应以及不对称光化学反应为例, 结合近年来在受限介质中光化学反应研究的最新进展, 总结了利用受限介质控制化学反应选择性的一般规律.  相似文献   

10.
Zeolite-coated optical fibers are useful as media to carry out asymmetric photochemical reactions and for sensing polyaromatic compounds.  相似文献   

11.
Two strategies, namely chiral inductor and chiral auxiliary approaches, have been examined within zeolites with the aim of achieving asymmetric induction during the photocyclization of cyclohexadienone, naphthalenone and pyridone derivatives. Within zeolites, enantioselectivity as high as 55% and diastereoselectivity as high as 88% have been obtained. The observed stereoselectivities are significant given the fact that these reactions gave very little stereoselectivities in isotropic solution media. The results obtained on the photocyclization of dienones, naphthalenones and N-alkyl pyridones within zeolites compliment our earlier investigations on the photocyclization of tropolone derivatives, the geometric isomerization of 1,2-diphenylcyclopropanes and 2,3-diphenyl-1-benzoyl cyclopropanes, and the Norrish type II reaction of alpha-oxoamides, phenyl adamantyl ketones, phenyl norbornyl ketones and phenyl cyclohexyl ketones. With the help of these examples, we have established the importance of zeolite and its charge compensating cations in effecting asymmetric induction in photochemical reactions.  相似文献   

12.
Navjeet Kaur 《合成通讯》2018,48(11):1259-1284
The chemists have been interested in light as an energy source to induce chemical reactions since the beginning of scientific chemistry. This review summarizes the chemistry of photochemical reactions with emphasis of their synthetic applications. The organic photochemical reactions avoid the polluting or toxic reagents and therefore offer perspectives for sustainable processes and green chemistry. In summary, this review article describes the synthesis of a number of five-membered N-heterocycles.  相似文献   

13.
The principal industrial applications of photochemistry have so far been in the fields of free-radical chlorination, sulfochlorination, sulfoxidation, and nitrosation. In addition, however, photochemical reactions are being utilized on an increasing scale for the synthesis of vitamins, drugs, and fragrances. The present article surveys the various kinds of light-induced reactions exploited industrially, the equipment developed, and uses of the photochemical products. Furthermore, the problems encountered in designing a photochemical production plant are discussed for the example of photonitrosation of cyclohexane.  相似文献   

14.
Searching for asymmetric synthesis in smectic phases is, to our knowledge, reported for the first time in this paper. Two different reactions able to lead to optical enrichment were carried out in smectic phases (S) composed of chiral molecules. The first was a thermally promoted 1,3 dipolar cycloaddition of a diazo compound to a prochiral thiocarbonyl derivative run in a chiral smectic C meso-phase (S*C). The second was a monomolecular process, the photochemical inversion of chiral sulphoxides in a smectic A mesophase. In both cases the asymmetric induction was zero or, in the best run, very very poor. This lack of transfer of chirality between the smectic solvent and the reaction is discussed to understand better the requirements for more successful tailoring of such experiments.  相似文献   

15.
Asymmetric synthesis was performed by combining the photochemical reaction of an achiral substrate followed by crystallization-induced deracemization. The results indicated that a fused indoline produced by photochemical intramolecular δ-hydrogen abstraction and cyclization of N-(5-chloro-2-methylphenyl)phthalimide crystallized as a racemic conglomerate. Since this substrate has an aminal skeleton, racemization involving a ring-opening and ring-closing equilibrium process occurred under suitable conditions. Efficient racemization was observed in acetone containing a catalytic base, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Crystallization-induced dynamic deracemization by Viedma ripening from racemic indoline was performed with an excellent enantioselectivity of 99 % ee. Furthermore, one-pot asymmetric synthesis of the indoline was achieved by the photochemical reaction of achiral phthalimide followed by continuous attrition-enhanced deracemization converging to 99 % ee of enantiomeric crystals. This is the first example of asymmetric expression and amplification by photochemical hydrogen abstraction and crystallization-induced dynamic deracemization.  相似文献   

16.
Chiral catalysts tolerating photochemical reactions are in great demand for the vast development of visible‐light‐induced asymmetric synthesis. Now, chiral octahedral complexes based on earth‐abundant metal and chiral N4 ligands are reported. One well‐defined chiral CoII‐complex is shown to be an efficient catalyst in the visible‐light‐induced conjugated addition of enones by alkyl and acyl radicals, providing synthetically valued chiral ketones and 1,4‐dicarbonyls in 47–>99 % yields with up to 97:3 e.r.  相似文献   

17.
近年来,用聚合物负载的手性催化剂和手性试剂完成的不对称合成反应主要集中在潜手性酮的不对称还原反应;烯烃的不对称双羟基化反应;烯烃的不对称环氧化反应;不对称Diels-Alder反应和饱和碳原子上的不对称取代反应。就近十年来聚合物负载手性催化剂和手性试剂的合成及应用进行了讨论。  相似文献   

18.
何煦昌 《合成化学》2002,10(5):377-384,453
不对称有机合成和反应是制备对映纯化合物的方法之一,它具有广泛而不同的含义。对基于反应产物的“立体选择合成”,基于反应物的“立体辨别反应”和“去对称”以及基于不对称诱导方式的“代”分类方法作了介绍和评述。另外,对几个与不对称合成有关的制备对映纯化合物的方法也作了阐述。对“双重不对称合成”的立体化学,以Michael反应为例进行了讨论。参考文献34篇。  相似文献   

19.
Michael加成是有机合成中形成C-C键的重要反应.近年来,对于不对称催化Michael加成反应的研究成为手性催化研究领域的热点之一.不含贵金属的有机小分子催化剂由于其温和、廉价、对环境友好等优点,其应用已成为催化领域的重要发展趋势.本文综述了脯氨酸衍生物催化手性Michael加成反应的研究进展,并对其发展前景作了展望.  相似文献   

20.
赵秋堂 《广州化学》2012,37(2):64-68
近年来手性沙美特罗的合成方法有微生物催化、不对称氢化、CBS(Corey-Bakshi-Shibata)还原反应及不对称Henry反应、手性(Salen)Co试剂催化的HKR(末端环氧不对称水解动力学)拆分反应等。对这些方法进行比较,结果表明,不对称催化合成由于其反应收率高、反应产物光学纯度高、操作容易控制,在目前手性药物的合成中处于主导地位。此外酶催化不对称合成、手性辅基诱导的对映选择性合成等方法也是有效的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号