首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Wound healing is a natural process to restore damaged tissues due to loss of tissue integrity. Moringa oleifera (locally known as merunggai in Malaysia) has been traditionally used in various ailments, including for wound management. To evaluate the wound healing properties in M. oleifera, publications were searched and selected following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement with predetermined inclusion criteria. The databases searched for primary studies include PubMed, Google Scholar, Science Direct, LILACS, ClinicalTrials.gov, and CENTRAL. In total, 18 in vivo studies were included, which involved the leaves, while the remaining 5 studies involved other plant parts tested on excision, incision, dead space, abrasion, and burn-induced wound models. All studies reported significant wound healing abilities. Most studies used different topical formulations of aqueous leaves extract. The accumulation of collagen content and underlying wound healing mechanism through antimicrobial, antioxidant, and anti-inflammatory activities may be contributed by its bioactive phytochemical content, which has the potential to accelerate the wound contraction, increase the rate of epithelialization, and protect tissues against oxidative damage. In conclusion, M. oleifera showed wound healing potential but further studies are warranted to determine the main bioactive phytocompounds and safety.  相似文献   

2.
3.
Bee venom (BV), also known as api-toxin, is widely used in the treatment of different inflammatory diseases such as rheumatoid arthritis or multiple sclerosis. It is also known that BV can improve the wound healing process. BV plays a crucial role in the modulation of the different phases of wound repair. It possesses anti-inflammatory, antioxidant, antifungal, antiviral, antimicrobial and analgesic properties, all of which have a positive impact on the wound healing process. The mentioned process consists of four phases, i.e., hemostasis, inflammation, proliferation and remodeling. The impaired wound healing process constitutes a significant problem especially in diabetic patients, due to hypoxia state. It had been found that BV accelerated the wound healing in diabetic patients as well as in laboratory animals by impairing the caspase-3, caspase-8 and caspase-9 activity. Moreover, the activity of BV in wound healing is associated with regulating the expression of transforming growth factor (TGF-β1), vascular endothelial growth factor and increased collagen type I. BV stimulates the proliferation and migration of human epidermal keratinocytes and fibroblasts. In combination with polyvinyl alcohol and chitosan, BV significantly accelerates the wound healing process, increasing the hydroxyproline and glutathione and lowering the IL-6 level in wound tissues. The effect of BV on the wounds has been proved by numerous studies, which revealed that BV in the wound healing process brings about a curative effect and could be applied as a new potential treatment for wound repair. However, therapy with bee venom may induce allergic reactions, so it is necessary to assess the existence of the patient’s hypersensitivity to apitoxin before treatment.  相似文献   

4.
Cell migration plays a crucial role in various biological processes including embryogenests,wound healing,immune response,and tissue development~([1]).Exploring and understanding the mechanisms and related factors underlying cell migration arc also very important for emerging areas of biotedmology which focus on cellular transplantation and the manufacture of artificial tissues,as well as for the development of new therapeutic strategies for controlling invasive tumor cells~([2]).  相似文献   

5.
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.  相似文献   

6.
7.
The stem bark of Holoptelea integrifolia (Roxb.) Planch. has been applied for the treatment of human cutaneous diseases as well as canine demodicosis in several countries. However, no detailed mechanistic studies have been reported to support their use. In this study, thin-layer chromatography and gas chromatography were used to screen phytochemicals from the fresh stem bark extract of H. integrifolia. We found the two major bioactive compounds, friedelin and lupeol, and their activity on wound healing was further investigated in keratinocytes. Both bioactive compounds significantly reduced wound area and increased keratinocyte migration by increasing matrix metalloproteinases-9 production. Subsequently, we found that the mRNA gene expressions of cadherin 1 and desmoglobin 1 significantly decreased, whereas the gene expression involved in keratinocyte proliferation and homeostasis (keratin-17) increased in compound-treated human immortalized keratinocytes cells. The expression of inflammatory genes (cyclooxygenase-2 and inducible nitric oxide synthase) and pro-inflammatory cytokine genes (tumor necrosis factor-alpha and interleukin-6) was reduced by treatment with n-hexane extract of H. integrifolia and its bioactive compounds. Our results revealed that H. integrifolia extract and its bioactive compounds, friedelin and lupeol, exhibit wound-healing activity with anti-inflammatory properties, mediated by regulating the gene expression involved in skin re-epithelialization.  相似文献   

8.
The protective effects of water extracts of djulis (Chenopodium formosanum) (WECF) and their bioactive compounds on particulate matter (PM)-induced oxidative injury in A549 cells via the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling were investigated. WECF at 50–300 µg/mL protected A549 cells from PM-induced cytotoxicity. The cytoprotection of WECF was associated with decreases in reactive oxygen species (ROS) generation, thiobarbituric acid reactive substances (TBARS) formation, and increases in superoxide dismutase (SOD) activity and glutathione (GSH) contents. WECF increased Nrf2 and heme oxygenase-1 (HO-1) expression in A549 cells exposed to PM. SP600125 (a JNK inhibitor) and U0126 (an ERK inhibitor) attenuated the WECF-induced Nrf2 and HO-1 expression. According to the HPLC-MS/MS analysis, rutin (2219.7 µg/g) and quercetin derivatives (2648.2 µg/g) were the most abundant bioactive compounds present in WECF. Rutin and quercetin ameliorated PM-induced oxidative stress in the cells. Collectively, the bioactive compounds present in WECF can protect A549 cells from PM-induced oxidative injury by upregulating Nrf2 and HO-1 via activation of the ERK and JUN signaling pathways.  相似文献   

9.
Mealworm and mealworm oil (MWO) have been reported to affect antioxidant, anti-coagulation, anti-adipogenic and anti-inflammatory activities. However, the function of MWO in wound healing is still unclear. In this study, we found that MWO induced the migration of fibroblast cells and mRNA expressions of wound healing factors such as alpha-smooth muscle actin (α-SMA), collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) in fibroblast cells. The tube formation and migration of endothelial cells were promoted through the activation of VEGF/VEGF receptor-2 (VEGFR-2)-mediated downstream signals including AKT, extracellular signal-regulated kinase (ERK) and p38 by MWO-stimulated fibroblasts for angiogenesis. Moreover, we confirmed that MWO promoted skin wound repair by collagen synthesis, re-epithelialization and angiogenesis in an in vivo excisional wound model. These results demonstrate that MWO might have potential as a therapeutic agent for the treatment of skin wounds.  相似文献   

10.
In recent years, interest has surged among researchers to determine compounds from bee products such as honey, royal jelly, propolis and bee pollen, which are beneficial to human health. Mass spectrometry techniques have shown that bee products contain a number of proven health-promoting compounds but also revealed rather high diversity in the chemical composition of bee products depending on several factors, such as for example botanical sources and geographical origin. In the present paper, we present recent scientific advances in the field of major bioactive compounds from bee products and corresponding regenerative properties. We also discuss extracellular vesicles from bee products as a potential novel bioactive nutraceutical component. Extracellular vesicles are cell-derived membranous structures that show promising potential in various therapeutic areas. It has been extensively reported that the use of vesicles, which are naturally formed in plant and animal cells, as delivery agents have many advantages. Whether the use of extracellular vesicles from bee products represents a new solution for wound healing remains still to be elucidated. However, promising results in specific applications of the bee products in wound healing and tissue regenerative properties of extracellular vesicles provide a good rationale to further explore this idea.  相似文献   

11.
Macrophages play a prominent role in wound healing. In the early stages, they promote inflammation and remove pathogens, wound debris, and cells that have apoptosed. Later in the repair process, they dampen inflammation and secrete factors that regulate the proliferation, differentiation, and migration of keratinocytes, fibroblasts, and endothelial cells, leading to neovascularisation and wound closure. The macrophages that coordinate this repair process are complex: they originate from different sources and have distinct phenotypes with diverse functions that act at various times in the repair process. Macrophages in individuals with diabetes are altered, displaying hyperresponsiveness to inflammatory stimulants and increased secretion of pro-inflammatory cytokines. They also have a reduced ability to phagocytose pathogens and efferocytose cells that have undergone apoptosis. This leads to a reduced capacity to remove pathogens and, as efferocytosis is a trigger for their phenotypic switch, it reduces the number of M2 reparative macrophages in the wound. This can lead to diabetic foot ulcers (DFUs) forming and contributes to their increased risk of not healing and becoming infected, and potentially, amputation. Understanding macrophage dysregulation in DFUs and how these cells might be altered, along with the associated inflammation, will ultimately allow for better therapies that might complement current treatment and increase DFU’s healing rates.  相似文献   

12.
Growth factors are essential for wound healing owing to their multiple reparative effects. Concentrated growth factor (CGF) is a third-generation platelet extract containing various endogenous growth factors. Herein, a CGF extract solution is combined with gelatin methacrylate (GM) by physical blending to produce GM@CGF hydrogels for wound repair. The GM@CGF hydrogels show no immune rejection during autologous transplantation. Compared to CGF, GM@CGF hydrogels not only exhibit excellent plasticity and adhesivity but also prevent rapid release and degradation of growth factors. The GM@CGF hydrogels display good injectability, self-healing, swelling, and degradability along with outstanding cytocompatibility, angiogenic functions, chemotactic functions, and cell migration-promoting capabilities in vitro. The GM@CGF hydrogel can release various effective molecules to rapidly initiate wound repair, stimulate the expressions of type I collagen, transform growth factor β1, epidermal growth factor, and vascular endothelial growth factor, promote the production of granulation tissues, vascular regeneration and reconstruction, collagen deposition, and epidermal cell migration, as well as prevent excessive scar formation. In conclusion, the injectable GM@CGF hydrogel can release various growth factors and provide a 3D spatial structure to accelerate wound repair, thereby providing a foundation for the clinical application and translation of CGF.  相似文献   

13.
Innovative biomaterial‐based concepts are required to improve wound healing of damaged vascularized tissues especially in elderly multimorbid patients. To develop functional hydrogels as 3D cellular microenvironments and as carrier or scavenging systems, e.g., for mediator proteins or proinflammatory factors, collagen fibrils are embedded into a network of photo‐crosslinked acrylated hyaluronan (HA), chondroitin sulfate (CS), or sulfated HA (sHA). After lyophilization, the gels show a porous structure and an improved stability against degradation via hyaluronidase. Gels with CS and sHA bind significantly more lysozyme than HA/collagen gels and retard its release. The proliferation and metabolic activity of endothelial cells are significantly increased on sHA gels compared to CS‐ or only HA‐containing hydrogels. These findings highlight the potential of HA/collagen hydrogels with sulfated glycosaminoglycans to tune the protein binding and release behavior and to directly modulate cellular response. This can be easily translated into biomimetic biomaterials with defined properties to stimulate wound healing.  相似文献   

14.
Wound healing is a complex physiological procedure that includes diverse stages, comprising hemostasis, inflammation, proliferation, and remodeling to reconstruct the skin and subcutaneous tissue's integrity. As reported, various coexisting diseases (diabetes, vascular diseases, etc.) substantially impact wound healing. Factors like recurring injury, age, or hypertrophic scarring also affect wound healing. The management of wound care depends primarily on the advancement of novel and efficient wound dressing substances, and it persists to be a vivid research area in chronic wound healing. Over the past years, the investigation and advancement of wound dressing biomaterials have registered a new standard level, and superior knowledge based on chronic wound pathogenesis has been achieved. Recently, nanotechnology has presented an excellent method to accelerate acute and chronic wound healing via stimulating appropriate movement through the diverse healing stages. Among various nanomaterials, nanoparticles (NPs) have been spotlighted as an efficient treatment strategy for wound healing due to their ability to act as both a therapeutic and carrier system. Their small size and high surface area to volume ratio enhance the probability of bio-interaction and penetration at the wound area aiding cell–cell interactions, the proliferation of cells, cell signaling, and vascularization. This review endeavored to throw light on different aspects of wounds and the latest advances in nanoparticle-based biomaterials for effective wound healing. Further, challenges and future potentialities have been addressed.  相似文献   

15.
Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a spatiotemporally controllable therapeutic modality in combating cancer because of its high tissue-penetration depth and minimal invasiveness. However, the elevated nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant program in cancer cells can serve as a chief reactive oxygen species (ROS) detoxification system to alleviate oxidative injury and promote tumorigenesis, and thus greatly antagonize the therapeutic efficacy of ROS-mediated anticancer therapies. Herein, we report that vanadium carbide MXene-derived carbon dots (PMQDs) can act as high-efficacy sonosensitizers to efficiently generate ROS upon US irradiation and simultaneously hinder the Nrf2 antioxidant program for enhanced sonodynamic therapy of cancer. These PMQDs show superior US-triggered ROS generating ability because of their efficient migration/separation of electron–hole pairs and narrow bandgap. Importantly, these PMQDs can serve as efficient redox homeostasis regulators to perturb the Nrf2 antioxidant mechanism and thus reduce its effects on ROS neutralization for enhanced SDT efficacy. Overall, the present study will not only provide a new paradigm to augment SDT by perturbing the Nrf2 antioxidant program, but also give valuable insights into developing high-efficacy MXene-derived nanoagents for cancer therapy.

A redox homeostasis regulator has been developed as a high-efficacy sonosensitizer to efficiently generate reactive oxygen species upon ultrasound irradiation and simultaneously hinder the Nrf2 antioxidant program for enhanced sonodynamic therapy.  相似文献   

16.
The first bioprocess that occurs in response to wounding is the deterrence of local hemorrhage. This is accomplished by platelet aggregation and initiation of the hemostasis cascade. The resulting blood clot immediately enables the cessation of bleeding and then functions as a provisional matrix for wound healing, which begins a few days after injury. Here, fibrinogen and fibrin fibers are the key players, because they literally serve as scaffolds for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. Fibrin is also an important modulator of healing and a host defense system against microbes that effectively maintains incoming leukocytes and acts as reservoir for growth factors. This review presents recent advances in the understanding and applications of fibrin and fibrin-fiber-incorporated biomedical materials applied to wound healing and subsequent tissue repair. It also discusses how fibrin-based materials function through several wound healing stages including physical barrier formation, the entrapment of bacteria, drug and cell delivery, and eventual degradation. Pure fibrin is not mechanically strong and stable enough to act as a singular wound repair material. To alleviate this problem, this paper will demonstrate recent advances in the modification of fibrin with next-generation materials exhibiting enhanced stability and medical efficacy, along with a detailed look at the mechanical properties of fibrin and fibrin-laden materials. Specifically, fibrin-based nanocomposites and their role in wound repair, sustained drug release, cell delivery to wound sites, skin reconstruction, and biomedical applications of drug-loaded fibrin-based materials will be demonstrated and discussed.  相似文献   

17.
Wounds represent a medical problem that contributes importantly to patient morbidity and to healthcare costs in several pathologies. In Hidalgo, Mexico, the Bacopa procumbens plant has been traditionally used for wound-healing care for several generations; in vitro and in vivo experiments were designed to evaluate the effects of bioactive compounds obtained from a B. procumbens aqueous fraction and to determine the key pathways involved in wound regeneration. Bioactive compounds were characterized by HPLC/QTOF-MS, and proliferation, migration, adhesion, and differentiation studies were conducted on NIH/3T3 fibroblasts. Polyphenolic compounds from Bacopa procumbens (PB) regulated proliferation and cell adhesion; enhanced migration, reducing the artificial scratch area; and modulated cell differentiation. PB compounds were included in a hydrogel for topical administration in a rat excision wound model. Histological, histochemical, and mechanical analyses showed that PB treatment accelerates wound closure in at least 48 h and reduces inflammation, increasing cell proliferation and deposition and organization of collagen at earlier times. These changes resulted in the formation of a scar with better tensile properties. Immunohistochemistry and RT-PCR molecular analyses demonstrated that treatment induces (i) overexpression of transforming growth factor beta (TGF-β) and (ii) the phosphorylation of Smad2/3 and ERK1/2, suggesting the central role of some PB compounds to enhance wound healing, modulating TGF-β activation.  相似文献   

18.
An approach was described to produce a wound area in vitro using laminar flow technique to selectively remove cells in microfluidic channels. Cell migration which plays an important role in the process of wound healing can be observed dynamically by this method. In order to prove our system, we have studied its properties by injecting NIH-3T3 cells into main channel and added several reagents to observe the mediatory influence. The results reveal that fibroblast growth factor-2(FGF-2), insulin-like growth factor 1(IGF-I), platelet-derived growth factor BB(PDGF-BB) and ascorbic acid(Vc) groups can promote cell migration compared with the control group. But the average migration distance was diminished in dexamethasone group. It can be concluded that this system can be used to analyze the process of wound healing.  相似文献   

19.
Thymoquinone is a natural bioactive with significant therapeutic activity against multiple ailments including wound healing. The poor aqueous solubility and low skin permeability limit its therapeutic efficacy. The present investigation aimed to improve the biopharmaceutical attributes of thymoquinone to enhance its topical efficacy in wound healing. A nanoemulsion-based hydrogel system was designed and characterized as a nanotechnology-mediated drug delivery approach to improve the therapeutic efficacy of thymoquinone, utilizing a high-energy emulsification technique. The black seed oil, as a natural home of thymoquinone, was utilized to improve the drug loading capacity of the developed nanoemulsion system and reduced the oil droplet size to <100 nm through ultrasonication. The influence of formulation composition, and the ultrasonication process conditions, were investigated on the mean globule size and polydispersity index of the generated nanoemulsion. Irrespective of surfactant/co-surfactant ratio and % concentration of surfactant/co-surfactant mixture, the ultrasonication time had a significant (p < 0.05) influence on the mean droplet size and polydispersity index of the generated nanoemulsion. The developed nanoemulgel system of thymoquinone demonstrated the pseudoplastic behavior with thixotropic properties, and this behavior is desirable for topical application. The nanoemulgel system of thymoquinone exhibited significant enhancement (p < 0.05) in skin penetrability and deposition characteristics after topical administration compared to the conventional hydrogel system. The developed nanoemulgel system of thymoquinone exhibited quicker and early healing in wounded Wistar rats compared to the conventional hydrogel of thymoquinone, while showing comparable healing efficacy with respect to marketed silver sulfadiazine (1%) cream. Furthermore, histopathology analysis of animals treated with a developed formulation system demonstrated the formation of the thick epidermal layer, papillary dermis along with the presence of extensive and organized collagen fibers in newly healed tissues. The outcome of this investigation signifies that topical delivery of thymoquinone through nanoemulgel system is a promising candidate which accelerates the process of wound healing in preclinical study.  相似文献   

20.
Wound healing, one of the most complex processes of the body involving the cooperation of several important biomolecules and pathways, is one of the major therapeutic and economic issues in regenerative medicine. The present study aimed to introduce a novel electrospun curcumin (Cur)‐incorporated chitosan/polyvinyl alcohol/carbopol/polycaprolactone nanofibrous composite for concurrent delivery of the buccal fat pad‐derived mesenchymal stem cells (BFP‐MSCs) and Cur to a full‐thickness wound on the mouse model. Scaffolds were characterized structurally using scanning electron microscopy (SEM), fluorescence microscopy imaging and Fourier‐transform infrared spectroscopy, and toxicity of the scaffolds was also evaluated after BFP‐MSC seeding by SEM imaging and 3‐(4,5 dimethyiazol‐2‐1)‐2‐5‐diphenyl tetrazolium bromide (MTT) assay. Then, its influence on the wound‐healing process was investigated as a wound dressing for a full‐thickness skin defect in mouse model. Results demonstrated that the designed composite scaffolds have the capability for cell seeding and support their growth and proliferation. Macroscopic and histopathological characteristics were evaluated at the end of the 7 and 14 days after surgery, and their results showed that our designed scaffold groups accelerated the wound‐healing process compared with the control group. Among those, scaffold/Cur, scaffold/Cur/BFP‐MSC and scaffold/BFP‐MSC groups demonstrated more wound repair efficacy. These results indicated that the combined grafts can be used to improve the wound‐healing process, and therefore, the electrospun nanofibers presented in this study, Cur and BFP‐MSC together, were demonstrated to have promising potential for wound‐dressing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号