首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以乙二醇壳聚糖为原料, 乙酸酐为酰化剂, 通过N-乙酰化反应, 制得了新型温敏性高分子乙酰化乙二醇壳聚糖. 通过核磁共振氢谱(1H NMR)、 傅里叶变换红外光谱(FTIR)及试管倒置法对乙酰化乙二醇壳聚糖的结构及温敏性进行了表征, 通过扫描电子显微镜(SEM)和紫外-可见分光光度计(UV-Vis)对水凝胶的微观形貌和体外药物释放性能进行了研究. 结果表明, 随着反应时间和乙酸酐与乙二醇壳聚糖氨基摩尔比的增加, 产物的乙酰度逐渐增加; 乙酰化乙二醇壳聚糖溶液具有热可逆温敏性溶胶-凝胶转变行为, 可以通过控制乙酰化乙二醇壳聚糖的乙酰度和溶液浓度, 使溶胶-凝胶转变温度处于室温至体温(25~37 ℃)之间; 乙酰化乙二醇壳聚糖水凝胶具有“高度孔隙化且孔隙之间相互连通”的结构特点, 通过控制乙酰度和溶液浓度, 可使其孔径大小处于1~40 μm范围内; 乙酰化乙二醇壳聚糖水凝胶的乙酰度为89.90%时, 质量分数为5%~7%的水凝胶对抗癌药物吉西他滨具有缓释作用, 载药凝胶的释药时间可达3~5 d. 乙酰化乙二醇壳聚糖有望在药物释放及组织工程等领域得到广泛应用.  相似文献   

2.
羧甲基壳聚糖含有丰富的羧基和氨基, 通过1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)共催化交联羧甲基壳聚糖形成新型水凝胶. 调节EDC/NHS用量, 制备不同交联度的羧甲基壳聚糖水凝胶(CMCS hydrogels). 研究水凝胶的流变行为, 结果表明, 高交联度的水凝胶具有较好的弹性形变能力, 较高的储存模量, 这是因为随着交联度的升高, 羧甲基壳聚糖水凝胶化学交联网络结构趋于完善. 以胸腺五肽(TP-5)为模型药物, 初步评价CMCS水凝胶药物释放行为, 结果表明水凝胶交联度越高, 胸腺五肽释放速度越慢. MTT法初步评价了水凝胶细胞毒性, 细胞形态和细胞相对增值速率, 结果表明水凝胶毒性很低. 由此可见, 水凝胶具有良好的生物相容性, 在药物缓释和组织工程领域具有广阔的应用前景.  相似文献   

3.
谭福能  何媛媛  隋卫平 《应用化学》2014,31(12):1399-1404
将壳聚糖改性为(2-羟基-3-丁氧基)丙基 羟丙基壳聚糖(2-H-3-B-P-HPCS),并以(2-羟基-3-丁氧基)丙基-羟丙基壳聚糖和聚乙二醇(PEG)为原料制备(2-羟基-3-丁氧基)丙基-羟丙基壳聚糖/聚乙二醇互穿网络凝胶,研究了(2-羟基-3-丁氧基)丙基-羟丙基壳聚糖浓度、聚乙二醇的用量、交联剂戊二醛用量、反应温度对该凝胶溶胀性能的影响。 通过红外光谱分析和扫描电子显微镜的方法比较了壳聚糖、(2-羟基-3-丁氧基)丙基-羟丙基壳聚糖和(2-羟基-3-丁氧基)丙基-羟丙基壳聚糖/聚乙二醇互穿网络凝胶结构和形态上的不同。 以阿昔洛韦为模型药物研究了其释药性能。 结果表明,该凝胶均具有良好的溶胀性、pH敏感性和药物缓释作用,有望用作新型的药物载体。  相似文献   

4.
Superabsorbent hydrogels based on the natural polymer chitosan and acrylic acid (CS/AAc) was prepared using 60Co gamma radiation as a source of initiation and crosslinking. The factors, which affect the preparation of CS/AAc hydrogels such as irradiation dose, CS/AAc ratios, and acrylic acid monomer concentrations, to get the best optimum conditions, were investigated. The kinetic studies of the swelling of CS/AAc hydrogel showed that it follows a Fickian type of water diffusion. The Fickian constant value ‘n’ was more than 0.5 with a high swelling capacity of 300 g/g as superabsorbent hydrogel. In addition, the suitability of CS/AAc hydrogel as carrier material for the drug Chlortetracycline-HCl has been investigated by adsorption isotherm studies. The performance of drug release from hydrogel systems, influenced by acrylic acid ratio and the effect of pH of the medium was studied.  相似文献   

5.
Thermally responsive hydrogels have drawn significant research attention recently because of their simple use as drug carrier at human body temperature. Here we design a hybrid hydrogel that incorporates a hydrophilic polymer, polyethyleneimine (PEI), into the thermally responsive hydrogel poly(N‐isopropylacrylamide) (PNIPAm), as a general drug carrier model for controlled drug release. In this work, on one hand, PEI modifies the structure and the size of the pores in the PNIPAm hydrogel. On the other hand, PEI plays an important role in tuning the water content in the hydrogel and controls the water release rate of the hydrogel below the lower critical solution temperature (LCST), resulting in a tunable release rate of the drugs at human body temperature (37 °C). Different release rates are shown as different amounts of PEI are incorporated. PEI controls the release rate, dependent on the charge characteristics of the drugs. The hydrogel blends described in this work extend the concept of a general drug carrier for loading both positively and negatively charged drugs, as well as the controlled release effect.  相似文献   

6.
Summary: Guar gum (GG) polymer was crosslinked in order to obtain a new hydrogel. The GG hydrogel has been characterized by means of FT-IR spectroscopy, the determination of the water content, at different pH values, rheological measurements and in vitro release studies. The GG hydrogel shows a maximum water uptake at acid and basic pH values. The mechanical properties are investigated in order to verify the thixotropic behaviour of the material. In vitro release studies are conducted to evaluate the application of the GG hydrogel as a matrix for controlled drug release.  相似文献   

7.
磁性壳聚糖微球的制备、表征及其靶向给药研究   总被引:18,自引:0,他引:18  
磁性微球;阿司匹林;磁性壳聚糖微球的制备、表征及其靶向给药研究  相似文献   

8.
A novel pH-sensitive hydrogel has been developed by UV induced radical polymerization of acrylic acid (AA) and amphiphilic macromonomer polyethylene glycol monolaurylether monoacrylate (PEGLA) with crosslinker ethylene glycol dimethacrylate for controlled release of acyclovir, a poor water-soluble model drug. The swelling behavior was investigated in the buffer of different pH at I = 0.1 M, as well as in the ethanol/water mixture. The hydrophobic association formed by the hydrocarbon chains in PEGLA was found to dominate the swelling properties of the hydrogels with subordinate pH sensitivity due to the ionization of the AA segments. Therefore, the drug loading of acyclovir has been improved and the release rate of acyclovir was slowed down with increasing the PEGLA content in the hydrogels. By fitting the release data with Weibull equation, the acyclovir release kinetics was changed from the Fickian diffusion to an anomalous diffusion when the PEGLA content in the hydrogels was beyond 20 mol%.  相似文献   

9.
Cross-linked chitosan (CS) films with aldehyde groups obtained by oxidation of carboxymethyl cellulose (CMC) with NaIO4 were prepared using different molar ratios between the CHO groups from oxidized carboxymethyl cellulose (CMCOx) and NH2 groups from CS (from 0.25:1 to 2:1). Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy demonstrated the aldehyde groups’ presence in the CMCOx. The maximum oxidation degree was 22.9%. In the hydrogel, the amino groups’ conversion index value increased when the -CHO/-NH2 molar ratio, cross-linking temperature, and time increased, while the swelling degree values decreased. The hydrogel films were characterized by scanning electron microscopy (SEM) and FTIR analysis. The curcumin encapsulation efficiency decreases from 56.74% to 16.88% when the cross-linking degree increases. The immobilized curcumin release efficiency (REf%) and skin membrane permeability were evaluated in vitro in two different pH solutions using a Franz diffusion cell, and it was found to decrease when the molar ratio -CH=O/NH2 increases. The curcumin REf% in the receptor compartment was higher at pH = 7.4 (18%- for the sample with a molar ratio of 0.25:1) than at pH = 5.5 (16.5%). The curcumin absorption in the skin membrane at pH = 5.5 (47%) was more intense than at pH = 7.4 (8.6%). The curcumin-loaded films’ antioxidant activity was improved due to the CS presence.  相似文献   

10.
在4-二甲氨基吡啶(DMAP)的催化下,天然高分子海带多糖(Lam)与甲基丙烯酸缩水甘油酯(GMA)发生亲核取代反应,制备出一种新型水溶性生物可降解交联剂——甲基丙烯酸缩水甘油酯接枝海带多糖(Lam-GMA)。以Lam-GMA为交联剂,与丙烯酰胺(AM)单体共聚制备水凝胶。在生理条件与脂肪酶的作用下,对凝胶的溶胀特性和降解行为进行研究。以牛血清白蛋白(BSA)为模型高分子药物,包埋在水凝胶中,研究其降解释药行为。结果表明,GMA接枝到Lam链的反应转化率很高,并且接枝率可控;交联剂用量越大,水凝胶降解所需时间越长;随着水凝胶的降解BSA缓慢释放。  相似文献   

11.
中西药结合抗菌性甲壳胺复合膜的制备及其体外释放   总被引:2,自引:0,他引:2  
利用甘油作为增塑剂,制备了以甲壳胺/淀粉/聚乙烯醇为基材的含有原儿茶酸(对烧伤、创伤有特效的中药)和环丙沙星(杀菌性能最强的抗菌剂)等的复合型生物敷料,研究了不同条件下制备的敷料膜其抗菌剂在林格试剂中的静态释放情况,并对释放机理进行了探讨.  相似文献   

12.
Lung cancer has been recognized as one of the most often diagnosed and perhaps most lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases has bumped into various limitations and challenges, including non-targeted drug delivery, short drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS), a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit) that exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocompatible, has emerged as an essential element for the development of a nano-particulate delivery vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the CS backbone has made it easy for the modification and functionalization of CS to be developed into a nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently, various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other restrictions of conventional drug administration for lung cancer treatment, are covered.  相似文献   

13.
以壳聚糖和甲基丙烯酸为原料,硝酸铈铵为引发剂,合成了不同接枝率的壳聚糖-g-聚甲基丙烯酸(CS-g-PMAA),用FTIR、1H NMR和元素分析表征了产物的结构,以柠檬酸三钠和戊二醛为交联剂制备了具有核壳结构的CS-g-PMAA载药体系。 用UV/Vis检测了CS-g-PMAA粒子对模型药物的释放行为。 结果表明,CS-g-PMAA接枝率为12.21%时药物释放速率最慢,其在pH=1.8介质中药物累积释放量(11 h)为44.18%,而壳聚糖粒子的累积释放量高达65.24%,即接枝改性壳聚糖粒子对药物的缓慢控制释放性能较好; CS-g-PMAA粒子的释药行为还依赖于介质的pH值和盐浓度,在低pH值和低盐浓度下,药物释放速率较快;酶环境下由于载体材料的降解使药物释放速率加快。 分析了不同条件下CS-g-PMAA载药粒子中药物的释放机理。  相似文献   

14.
As a novel painless and minimally invasive transdermal drug delivery method, microneedles have solved the challenges of microbial infection and tissue necrosis associated with multiple subcutaneous injections in patients with diabetes. However, traditional soluble microneedles cannot switch drug release on and off according to the patient's needs during long-term use, which is one of the most critical elements of diabetes treatment. Herein, an insoluble thermosensitive microneedle (ITMN) that can control the release of insulin by adjusting the temperature, enabling the precise treatment of diabetes is designed. Thermosensitive microneedles are produced by in situ photopolymerization of the temperature-sensitive compound N-isopropylacrylamide with the hydrophilic monomer N-vinylpyrrolidone, which is encapsulated with insulin and bound to a mini-heating membrane. ITMN are demonstrated to have good mechanical strength and temperature sensitivity, can release significantly different insulin doses at different temperatures, and effectively regulate blood glucose in type I diabetic mice. Therefore, the ITMN provides a possibility for intelligent and convenient on-demand drug delivery for patients with diabetes, and when combined with blood glucose testing devices, it has the potential to form an integrated and precise closed-loop treatment for diabetes, which is of great importance in diabetes management.  相似文献   

15.
In different parts of the gastrointestinal tract, the rate of drug release from polyelectrolyte hydrogel tablets is highly affected by variance of ionic concentration. This research aims at revealing clearly how the drug release from a hydrogel matrix is affected by ionic concentration of external solution through the finite element simulation and triphasic mechanism model. The coupled relationship of the motions including the polyelectrolyte hydrogel swelling, the water flow and the ion diffusion, is illustrated in the present work. In order to simulate the drug controlled release from a swollen polyelectrolyte hydrogel carrier, the mathematical model was built on the basis of the multiphasic theory of polyelectrolyte hydrogels. Finally, the reliability of the simulation method was verified qualitatively by experimental results. The results reveal that when the initial concentration of fixed anions of polymer network is higher than the concentration of free anions in the external solution, the drug release rate increases with increasing the ionic concentration of the external solution. The research is helpful for the optimal design of oral drug release in gastrointestinal tract.  相似文献   

16.
An effective drug nanocarrier was developed on the basis of a quaternized aminated chitosan (Q-AmCs) derivative for the efficient encapsulation and slow release of the curcumin (Cur)-drug. A simple ionic gelation method was conducted to formulate Q-AmCs nanoparticles (NPs), using different ratios of sodium tripolyphosphate (TPP) as an ionic crosslinker. Various characterization tools were employed to investigate the structure, surface morphology, and thermal properties of the formulated nanoparticles. The formulated Q-AmCs NPs displayed a smaller particle size of 162 ± 9.10 nm, and higher surface positive charges, with a maximum potential of +48.3 mV, compared to native aminated chitosan (AmCs) NPs (231 ± 7.14 nm, +32.8 mV). The Cur-drug encapsulation efficiency was greatly improved and reached a maximum value of 94.4 ± 0.91%, compared to 75.0 ± 1.13% for AmCs NPs. Moreover, the in vitro Cur-release profile was investigated under the conditions of simulated gastric fluid [SGF; pH 1.2] and simulated colon fluid [SCF; pH 7.4]. For Q-AmCs NPs, the Cur-release rate was meaningfully decreased, and recorded a cumulative release value of 54.0% at pH 7.4, compared to 73.0% for AmCs NPs. The formulated nanoparticles exhibited acceptable biocompatibility and biodegradability. These findings emphasize that Q-AmCs NPs have an outstanding potential for the delivery and slow release of anticancer drugs.  相似文献   

17.
The composite microspheres based on gelatin (Gel) and chitosan (Cs) loaded with 5-fluorouracil (5-FU) were fabricated using glutaraldehyde (GA) as a crosslinker. The in-vitro degradation behaviors of the Gel/Cs microspheres, including the changes of pH value, mass loss and microsphere morphology, were studied. The in-vitro cytotoxicites of Gel/Cs microspheres loaded and unloaded with 5-FU were carried out with MCF-7 breast cancer cell line. The empty Gel/Cs microspheres showed a smooth surface and were evenly distributed; however, there was much aggregation observed for the microspheres loaded with 5-FU. The degradation results showed that the pH values of both PBS and PBS-lysozyme solutions increased with increasing degradation time but the increase of pH value of PBS-lysozyme solution was quicker than that of PBS solution. The aggregated Gel/Cs microspheres lose their shape and many fibers were found after 21 days in PBS solution; while the Gel/Cs microsphere disappeared in PBS-lysozyme solution. The mass loss of the Gel/Cs microspheres in PBS-lysozyme solution was larger than that of the Gel/Cs in PBS solution. The results indicated that lysozyme can accelerate the degradation of Gel/Cs microspheres. The cytotoxicity results showed that the cell viability decreased with increasing glutaraldehyde content for the empty Gel/Cs microspheres; however, the cell viability increased with increasing glutaraldehyde content for the Gel/Cs microspheres loaded with 5-FU. Therefore, the Gel/Cs microspheres can be offered as drug carrier candidates for long-term applications of anti-cancer drugs.  相似文献   

18.
Self-assembly peptide nanotechnology has attracted much attention due to its regular and orderly structure and diverse functions. Most of the existing self-assembly peptides can form aggregates with specific structures only under specific conditions and their assembly time is relatively long. They have good biocompatibility but no immunogenicity. To optimize it, a self-assembly peptide named DRF3 was designed. It contains a hydrophilic and hydrophobic surface, using two N-terminal arginines, leucine, and two c-terminal aspartate and glutamic acid. Meanwhile, the c-terminal of the peptide was amidated, so that peptide segments were interconnected to increase diversity. Its characterization, biocompatibility, controlled release effect on antigen, immune cell recruitment ability, and antitumor properties were examined here. Congo red/aniline blue staining revealed that peptide hydrogel DRF3 could be immediately gelled in PBS. The stable β-sheet secondary structure of DRF3 was confirmed by circular dichroism spectrum and IR spectra. The observation results of cryo-scanning electron microscopy, transmission electron microscopy, and atomic force microscopy demonstrated that DRF3 formed nanotubule-like and vesicular structures in PBS, and these structures interlaced with each other to form ordered three-dimensional nanofiber structures. Meanwhile, DRF3 showed excellent biocompatibility, could sustainably and slowly release antigens, recruit dendritic cells and promote the maturation of dendritic cells (DCs) in vitro. In addition, DRF3 has a strong inhibitory effect on clear renal cell carcinoma (786-0). These results provide a reliable basis for the application of peptide hydrogels in biomedical and preclinical trials.  相似文献   

19.
Summary: In this work, an attempt was made to synthesize a novel Chitosan-Mesoporous silica (CS-MS) hybrid composite to design a drug delivery system based on ultrasound triggered stimuli-responsive smart release. The in-vitro drug release properties of both the Mesoporous Silica (MS) and Chitosan (CS) hybrids were investigated. Ibuprofen (Ibu) was used as a model drug. The results from powder X-Ray diffraction (XRD) patterns, and BET N2 adsorption isotherms exhibited that MS can accommodate drug molecules into the lumen of the channels and pores. Drug release, stimulated by temperature and pH of the release media was also investigated. We studied the Ultrasound (US) triggered release of Ibu in a simulated body fluid (pH 7.4). The results exhibited that US can be used as a non-invasive technique for drug release from polymeric materials. The enhancing effect of ultrasound on drug release is due to the Cavitation effect, without causing any significant destruction on the polymer morphology.  相似文献   

20.
新型载药壳聚糖季铵盐的合成、结构与性能   总被引:1,自引:0,他引:1  
通过羧甲基壳聚糖接枝二甲基十八烷基环氧丙基氯化铵, 制备了一系列不同取代度和分子量的羧甲基壳聚糖十八烷基季铵盐(QACMC). 用傅立叶变换红外(FTIR)光谱、核磁共振谱(1H-NMR)、X射线衍射(XRD)谱、差式扫描量热法(DSC)等对其分子结构、结晶和热性能进行研究, 同时研究QACMC的吸湿保湿性能, 并与透明质酸(HA)、壳聚糖(chitosan)和羧甲基壳聚糖(CMC)进行比较. 结果表明, QACMC具有较好的结晶性和热稳定性, 结晶度可达72.3%; 其吸湿保湿性低于透明质酸(HA)和羧甲基壳聚糖, 而受季铵基团取代度和QACMC分子量的影响, 羧酸盐和季铵盐两种亲水基团对QACMC吸湿性的影响不具有协同作用; QACMC对亲脂性药物盐酸米诺环素的载药率可达10.9%(质量分数), 远高于壳聚糖和羧甲基壳聚糖.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号