首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of trans-[TcX4L2] (X Cl, Br and L PPH3, PMe2Ph) with carbon monoxide (1 atm) in boiling ethyleneglycol methyl ether, gives trans-[TcX-(CO)3L2]. Under these conditions the mer-[TcX3(PMe2Ph)3] (X Cl, Br) gives a mixture of the trans-[TcX(CO)3(PMe2Ph)2] and cis-[TcX(CO)2(PMe2Ph)3] complexes, but when added free dimethylphenylphosphine is present only the second product is obtained. Carbon monoxide reacts with mer-[TcCl3(PMe2Ph)3] in refluxing ethanol to give [TcCl3(CO)(PMe2Ph)3] a C3 v seven-coordinate technetium(III) complex.The stereochemistry of the complexes was determined from their IR and1H NMR spectra.  相似文献   

2.
The novel complex cis‐[(ITMe)2Pd(SiMe3)2 (ITMe=1,3,4,5‐tetramethylimidazol‐2‐ylidene) has been synthesized by mild oxidative cleavage of Me3SiSiMe3 using [(ITMe)2Pd0]. The use of this complex as precatalyst for the cis‐bis(silyl)ation of alkynes using unactivated disilanes is reported.  相似文献   

3.
A number of neutral, mononuclear dialkylpalladium(II) tertiary phosphine complexes of geneal formula cis or trans-PdR2(PMe3)2 and cis-PdR2 (dmpe) [dmpe = 1,2-bis(dimethylphosphino)ethane], R = Me, CH2Ph, CH2CMe2Ph, CH2SiMe3 have been obtained by interaction of magnesium reagents with palladium(II) acetate or trans-Pd(O2CMe)2(PMe3)2.  相似文献   

4.
The reactions of [M2Cl2(μ-Cl)2(PMe2Ph)2] with mercapto-o-carboranes in the presence of pyridine afforded mono-nuclear complexes of composition, [MCl(SCb°R)(py)(PMe2Ph)] (M = Pd or Pt; Cb° = o-C2B10H10; R = H or Ph). The treatment of [PdCl2(PEt3)2] with PhCb°SH yielded trans-[Pd(SCb°Ph)2(PEt3)2] (4) which when left in solution in the presence of pyridine gave another substitution product, [Pd(SCb°Ph)2(py)(PEt3)] (5). The structures of [PdCl(SCb°Ph)(py)(PMe2Ph)] (1), [Pd(SCb°Ph)2(PEt3)2] (4) and [Pd(SCboPh)2(py)(PEt3)] (5) were established unambiguously by X-ray crystallography. The palladium atom in these complexes adopts a distorted square-planar configuration with neutral donor atoms occupying the trans positions. Thermolysis of [PdCl(SCb°)(py)(PMe2Ph)] (2) in TOPO (trioctylphosphine oxide) at 200 °C gave nanocrystals of TOPO capped Pd4S which were characterized by XRD pattern and SEM.  相似文献   

5.
The reaction of cis-[PdCl2(CNR)2] (R = Ph, p-MeC6H4, p-MeOC6H4) and trans-[PdI2(CNPh)2] with HgR′2 (R′ = Me, Ph) followed by addition of PPh3 (Pd/PPh3, 12) gives complexes of the type trans- [PdX {C(=NR)C(R′)=NR}(PPh3)2] (X = Cl, I) I as main products. These bis(imino) compounds may result from double insertion of the coordinated isocyanides into a PdR′ σ-bond. NaBPh4 was also found to act like HgPh2 as a good phenylating agent towards coordinated isocyanide. The reactions of I with methanolic HClO4 yield cationic compounds: trans- [PdX{C(NHR)C(R′)=NR}(PPh3)2]ClO4; the protonated bis(imino) group may also be formulated as {C(=NR)C(R′)NHR} and a fast equilibrium between the two forms probably exists in solution. The factors influencing the reaction with HgR′2 and spectroscopic data (IR and 1H NMR) for the complexes are reported and discussed.  相似文献   

6.
The complex [NiCl2(PMe3)2] reacts with one equivalent of mg(CH2CMe3)Cl to yield the monoalkyl derivative trans-[Ni(CH2CMe3)Cl(PMe3)2], which can be carbonylated at room temperature and pressure to afford the acyl [Ni(COCH2CMe3)Cl(PMe3)2]. Other related alkyl and acyl complexes of composition [Ni(R)(NCS)(PMe3)2] (R = CH2CMe3, COCH2CMe3) and [Ni(R)(η-C5H5)L] (L = PMe3, R = CH2CMe3, COCH2CMe3; L = PPh3, R = CH2CMe2Ph) have been similarly prepared. Dialkyl derivatives [NiR2(dmpe)] (R = CH2SiMe3, CH2CMe2Ph; dmpe = 1,2-bis(dimethylphosphine)ethane, Me2PCH2 CH2PMe2) have been obtained by phosphine replacement of the labile pyridine and NNN′N′-tetramethylethylenediamine ligands in the corresponding [Ni(CH2SiMe3)2(py)2] and [Ni(CH2CMe2Ph)2(tmen)] complexes. A single-crystal X-ray determination carried out on the previously reported trimethylphosphine derivative [Ni(CH2SiMe3)2(PMe3)2] shows the complex belongs to the orthorhombic space group Pbcn, with a = 14.345(4), b = 12.656(3), c = 12.815(3) Å, Z = 4 and R 0.077 for 535 independent observed reflections. The phosphine ligands occupy mutually trans positions P-Ni-P 146.9(3)° in a distorted square-planar arrangement.  相似文献   

7.
Transition Metal Silyl Complexes, 44. — Preparation of the Binuclear Silyl Complexes (CO)3(R3Si)Fe(μ-PR′R′′)Pt(PPh3)2 by Oxidative Addition of (CO)3(R′R′′HP)Fe(H)SiR3 to (C2H4)Pt(PPh3)2 The complexes (CO)3(R′R′′HP)Fe(H)SiR3 ( 1 ) [PHR′R′′ = PHPh2, PH2Ph, PH2Cy; SiR3 = SiPh3, SiPh2Me, SiPhMe2, Si(OMe)3] react with Pt(C2H4)(PPh3)2 to give the dinuclear, silyl-substituted complexes (CO)3(R3Si)Fe(μ-PR′R′′)Pt(PPh3)2 ( 2 ) in high yields. Upon reaction of 2 (R = R′ R′′ = Ph) with CO, the PPh3 ligand at Pt being trans to the PPh2 bridge is exchanged, and (CO)3(Ph3Si)Fe(μ-PPh2)Pt(PPh3)CO ( 3 ) is formed. Complex 3 is characterized by an X-ray structure analysis. The rather short Fe — Si distance [233.9(2) pm] and the infrared spectrum of 3 indicate that the Fe — Pt bond is quite polar.  相似文献   

8.
The complex mer-trans-[Mn(CO)3{P(OMe)2Ph}2X] (X = Cl, Br) is an intermediate in the conversion of fac-[Mn(CO)3{P(OMe)2,Ph}2,X] into mer- cis-[Mn(CO)2{P(OMe)2Ph}3X] in the presence of P(OMe)2Ph in benzene. No direct route between the latter two complexes could be detected kinetically. The results imply a trans carbonyl disposition as a prerequisite for higher carbonyl substitution in octahedral Mn1 carbonyl complexes.  相似文献   

9.
Halide abstraction from [Pd(μ-Cl)(Fmes)(NCMe)]2 (Fmes = 2,4,6-tris(trifluoromethyl)phenyl or nonafluoromesityl) with TlBF4 in CH2Cl2/MeCN gives [Pd(Fmes)(NCMe)3]BF4, which reacts with monodentate ligands to give the monosubstituted products trans-[Pd(Fmes)L(NCMe)2]BF4 (L = PPh3, P(o-Tol)3, 3,5-lut, 2,4-lut, 2,6-lut; lut = dimethylpyridine), the disubstituted products trans-[Pd(Fmes)(NCMe)(PPh3)2]BF4, cis-[Pd(Fmes)(3,5-lut)2(NCMe)]BF4, or the trisubstituted products [Pd(Fmes)L3]BF4 (L = CNtBu, PHPh2, 3,5-lut, 2,4-lut). Similar reactions using bidentate chelating ligands give [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda, dppe, OPPhPy2-N,N′, (OH)(CH3)CPy2-N,N′). The complexes trans-[Pd(Fmes)L2(NCMe)]BF4 (L = PPh3, tht) (tht = tetrahydrothiophene) and [Pd(Fmes)(L-L)(NCMe)]BF4 (L-L = bipy, tmeda) were obtained by halide extraction with TlBF4 in CH2Cl2/MeCN from the corresponding neutral halogeno complexes trans-[Pd(Fmes)ClL2] or [Pd(Fmes)Cl(L-L)]. The aqua complex trans-[Pd(Fmes)(OH2)(tht)2]BF4 was isolated from the corresponding acetonitrile complex. Overall, the experimental results on these substitution reactions involving bulky ligands suggest that thermodynamic and kinetic steric effects can prevail affording products or intermediates different from those expected on purely electronic considerations. Thus,water, whether added on purpose or adventitious in the solvent, frequently replaces in part other better donor ligands, suggesting that the smaller congestion with water compensates for the smaller M-OH2 bond energy.  相似文献   

10.
A cationic complex, trans-[(mesityl)Ni(PPhMe2)2(NCMe)]ClO4 (IIa), has been prepared rom trans-(mesityl)Ni(PPhMe2)2Br and silver perchlorate in acetone/acetonitrile. IIa reacts with several neutral ligands to give trans-[(mesityl)Ni(PPhMe2)2L]ClO4 (L = 2-pic, 3-pic, 3,4-lut, 2,5-lut, methyl isonicotinate, N-ethyl imidazole, PPhMe2, P(Ome)3), with halide anions to give trans-(mesityl)Ni(PPhMe2)2X (X = Cl, NNN), and with terminal alkynes in the presence of triethylamine to give trans-(mesityl)Ni(PPhMe2)2CCR (R = H, Me, CH2CH2Oh, Ph, C6H4OMe-p). Some related alkynyl complexes trans-CCl2CClNi(PPhMe2)2CCR (R = H, Me, Ph, C6H4OMe-p) and trans-{(o-MeO)2C6H3}Ni(PPhMe2)2CCr (R = H, Ph) also have been prepared from the corresponding trans-R′Ni(PPhMe2)2Cl, silver perchlorate and HCCR in acetonitrile-triethylamine. trans-(Mesityl)Ni(PPhMe2)2CCH reacts with methanol in the presence of perchloric acid to give a cationic carbne complex, trans-[(mesityl)Ni(PPhMe2)2{C(OMe)Me}]ClO4.  相似文献   

11.
The preparation of the bidentate ligand 2, 11-bis(diphenylarsinomethyl)benzo-[c]-phenanthrene ( 1 ) is described. This ligand reacts with appropriate substrates to give mononuclear square planar complexes of type [MX2( 1 )] (M = Pd, Pt; X = Cl, Br, I) and [M′Cl(CO)( 1 )] (M′ = Rh, Ir) in which ligand 1 spans trans-positions. This is confirmed by the crystal structure of [PtCl2( 1 )]. 1H-NMR. spectra of the complexes are discussed and compared with those of model compounds trans-[MCl2( 12 )2] (M = Pd, Pt) and [M'Cl(CO)( 12 )2] (M′ = Rh, Ir; 12 = AsBzPh2).  相似文献   

12.
《Polyhedron》1999,18(23):3031-3034
The complex [Ir(CO)2X2][NBu4] (X=Cl, Br) forms Vaska-type complexes, trans-[Ir(ER3)2(CO)X], when treated with two equivalents of aryl- or alkyl-phosphines, arsines, or stibines under a CO atmosphere. The synthesis is general for a wide range of phosphines, arsines, or stibines irrespective of the cone angle. For small cone-angle ligands, the initial addition of ligand to [Ir(CO)2X2][NBu4] is performed at low temperature. The synthesis and characterisation of three new Vaska-type complexes trans-[Ir(P(OMe)3)2(CO)Cl], trans-[Ir(AsMe3)2(CO)Cl], and trans-[Ir(AsEt3)2(CO)Cl] is also reported.  相似文献   

13.
Room temperature reaction of [Pd2(dba)3]/PR3 or [Pt(C2H4)(PR3)2] (dba = dibenzylideneacetone; R = Et, Bu) with the diselenides (R′Se)2 (R′ = Ph, Fc) yielded the oxidative addition products trans-[M(SeR′)2(PR3)2] (M = Pd, Pt). These have been characterised by multinuclear NMR and UV-Vis spectroscopy, mass spectrometry, and, in the cases of trans-[Pt(SePh)2(PR3)2] (R = Et, Bu) and trans-[Pt(SeFc)2(PBu3)2], also by X-ray crystallography.  相似文献   

14.
An alternative synthesis of C‐monoacetylenic phosphaalkenes trans‐Mes*P=C(Me)(C≡CR) (Mes* = 2, 4, 6‐tBu3Ph, R = Ph, SiMe3) from C‐bromophosphaalkenes cis‐Mes*P=C(Me)Br using standard Sonogashira coupling conditions is described. Crystallographic studies confirm cistrans isomerization of the P=C double bond during Pd‐catalyzed cross coupling, leading exclusively to trans‐acetylenic phosphaalkenes. Crystallographic studies of all synthesized compounds reveal the extend of π‐conjugation over the acetylene and P=C π‐systems.  相似文献   

15.
《Polyhedron》1999,18(8-9):1141-1145
Exchange reactions of trans-[PdXPh(SbPh3)2] (1) (X=Cl or Br) with ligands L in refluxing dichloromethane give the palladium phenyl complexes [PdXPhL2] (X=Cl, L=PPh3, AsPh3, L2=2,2′-bipyridine (bipy), 4,4′-dimethyl-2,2′-bipyridine (dmbipy), 1,10-phenanthroline (phen); X=Br, L=PPh3, L2=bipy). Treatment of the complexes with bis(diphenylphosphino)methane (dppm) in refluxing dichloromethane gives [PdXPh(dppm]2. These complexes have been characterised by microanalysis, IR and 1H NMR spectroscopic data together with single crystal X-ray determinations of the phenyl palladium complexes, trans-[PdClPh(PPh3)2], [PdClPh(bipy)], [PdClPh(dppm)]2, and [PdBrPh(dppm)]2.  相似文献   

16.
The mixed ligand complexes PtX2(ER3)L and PtXY(ER3)L (where ER3 = PR3 or AsMe3; L = phosphine, arsine; X = Cl; Y = Cl, H or Me) have been prepared and characterized. Reaction of PtMe2(ER3)L with HCl yields PtMeCl(ER3)L, in exclusively one of three possible isomeric forms. Excess tetramethyltin reacts with Pt2Cl2(μ-Cl)2(PMe2Ph)2 giving both cis and trans Pt2(μ-Cl)2(PMe2Ph)2, as identified from the NMR spectra. Cleavage of Pt2(μ-Cl)2Me2(PMe2Ph)2 with donor ligands such as AsPh3, PMe2 or pyridine, was useful as a synthetic route to the unsymmetrical methylchloro PtII derivatives. The reaction of cis-[PtMe2(PPh3)(AsPh3)] with excess dimethylacetylenedicarboxylate (DMA) yielded only one product, which was of the formula trans-[Pt{C(COOCH3)C(COOCH3)CH3}2(PPh3)(AsPh3)], with the alkenyl groups having the same geometry about the CC bond. The use of diethylacetylene-dicarboxylate (DEA) rather than DMA gave a similar product. However, when cis-[PtMe2(PEt3)(AsPh3)] was allowed to react with DMA, two products of the formula trans-[Pt{C(COOCH3)C(COOCH3)CH3}2(PEt3)(AsPh3)] were obtained, with the stereochemistry of both alkenyl groups being either cis or trans.  相似文献   

17.
Summary As an approach to systems containing methionine residues, 3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one (HDh, dehydroacetic acid) was treated with L-methionine (MetH) or L-methionine methylester (MetM). By condensation at the acyl group and transfer of the phenolic hydrogen on the nitrogen atom, the related ligands DhMetH and DhMetM, were isolated, and form complexes of formula [MX2(L)2](M = Pd or Pt, L = DhMetM, X = Cl, Br or I; L = DhMetH, X = Cl or Br) and [MI2(DhMetH)] with palladium and platinum dihalides. The reaction of the DhMetK carboxylate with MCl2 in various media is discussed. Ligands and complexes were characterized by i.r. and n.m.r. (1H and13C) spectroscopy and, in some cases, by thermogravimetric measurements. The ligands behave as monodentate sulphur donors, the 12 complexes showing atrans geometry except for [PtCl2(DhMetH)2], which is probably a mixture ofcis andtrans isomers.  相似文献   

18.
Treatment of 1-methoxynaphthalene (MXNH) with n-butyllithium in a diethyl ether/n-hexane solution gives 1-methoxynaphthalene-8-lithium (MXNLi) in 30% yield as an insoluble material. This compound reacts with PdCl2(SEt2)2 to give bis(1-methoxynaphthalene-8-C,O)palladium(II) (I)_and with PtCl2(SEt2)2 to give cis- and trans-(1-methoxynaphthalene-8-C,O)(1-methoxynaphthalene-8-C)(diethylsulfide)platinum(II) (II), which are non-rigid molecules in solution. With the cyclopalladated dimers [{Pd(CN)Cl2}2], MXNLi gives the palladobicyclic compounds: (N∩C)Pd(C∩O) (III). An X-ray diffraction study of compound IIIa where N∩N = 8-methylquinoline-C,N reveals the planarity of the molecule, shows that it has a cis configuration with respect to the PdC bonds, and confirms that the oxygen atom of MXN is bonded to palladium: PdO 2.236(4) Å. The geometry of IIIa is maintained in solution, whereas the corresponding compounds IIIb and IIIc in which N∩C is benzo[h]quinoline-9-C,N and N,N-dimethyl-1-naphthylamine-8-C,N, respectively, appear to be mixtures of cis and trans isomers in solution. With PMe2Ph I and II give trans-Pd(MXN)2(PMe2Ph)2 and cis-Pt(MNX)2(PMe2Ph)2, respectively, in which the methoxynaphthalene is bound to the metals via the 8-carbon of the naphthalene ring. Only one phosphine ligand adds to compounds IIIb and IIIc with displacement of the O → Pd bond. One carbon monoxide ligand can be added to the platinum compound II to give Pt(MXN)2(SEt2)CO which in solution exists as two isomers in equilibrium.  相似文献   

19.
The bidentate phosphine 2,11-bis(diphenylphosphinomethyl)benzo [c]phenanthrene ( 1 ) has been used to prepare the mononuclear, square planar complexes trans-[MX(CO)( 1 )] and trans-[M(CO)(CH3CN)( 1 )][BF4] (M = Rh, Ir; X = Cl, Br, I, NCS). It is found that the tendency of these complexes to form adducts with CO, O2 and SO2 is significantly lower than that of the corresponding Ph3P complexes. The oxidative-addition reactions of complexes trans-[IrX (CO) ( 1 )] with hydrogen halides give the six-coordinate species [IrHX2(CO) ( 1 )]. The complexes [IrH2I (CO) ( 1 )] and [IrH2L (CO) ( 1 )] [BF4] (L = CO and CH3CN) have been obtained from hydrogen and the corresponding substrates. The model compounds trans-[MCl (CO) (Ph2PCH2Ph)2] (M = Rh, Ir), trans-[Ir (CO) (CH3CN) (Ph2PCH2Ph)2] [BF4], [IrHCl2(CO)(Ph2PCH2Ph)2] and [IrH2(CO)2(Ph2PCH2Ph)2] [BF4] have been prepared and their special parameters are compared with those of the corresponding complexes of ligand 1 . The influence of the static requirements of this ligand on the chemistry of its rhodium and iridium complexes is discussed.  相似文献   

20.
Metallation of (HMe2Si)(Me3Si)2CH (1) by LiMe gave the organolithium compound Li(THF)2C(SiMe3)2(SiMe2H) (2a), which exists in toluene solution as a mixture of covalent species and ion pairs [Li(THF)4][Li{C(SiMe3)2(SiMe2H)}2] (2b). Treatment of a mixture of 1 and LiMe with KOBut gave KC(SiMe3)2(SiMe2H) (3). This reacted with AlMe2Cl in hexane/THF to give Al(THF)Me2{C(SiMe3)2(Si Me2H)} (4). Treatment of (HMe2Si)(PhMe2Si)2CH (5) with LiMe in Et2O/THF gave the THF adduct [Li(THF)2C(SiMe2Ph)2(SiMe2H)] (6); in the presence of KOBut the solvent-free [K][C(SiMe2Ph)2(SiMe2H)] (7) was obtained. Crystal structure determinations showed that 6 crystallizes in a molecular lattice and 7 in an ionic lattice in which the coordination sphere of the potassium comprises phenyl groups and hydrogen atoms attached to silicon, as well as the central carbon of the bulky carbanion. Compound 7 reacted with an excess of AlMe2Cl to give [AlClMe{C(SiMe2Ph)2(SiMe2H)}]2 (8) and AlMe3. A small amount of the methoxo derivative [Al(OMe)Me{C(SiMe2Ph)2(SiMe2H)}]2 (9) was obtained as a byproduct, presumably after the accidental admission of traces of air. X-ray structural determinations showed that 8 forms halogen-bridged dimers, with the bulky ligands in the anti-configuration, and 9 forms methoxo-bridged species in which the bulky ligands are syn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号