首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The local water slamming refers to the impact of a part of a ship hull on stationary water for a short duration during which high local pressures occur on the hull. We simulate slamming impact of rigid and deformable hull bottom panels by using the coupled Lagrangian and Eulerian formulation included in the commercial software LS-DYNA. We use the Lagrangian formulation to describe plane-strain deformations of the hull panel and consider geometric nonlinearities. The Eulerian formulation is used to analyze deformations of the water. Deformations of the hull panel and of the water are coupled through the hydrodynamic pressure exerted by water on the hull, and the velocity of particles on the hull wetted surface affecting deformations of the water. The continuity of surface tractions and the inter-penetrability of water into the hull are satisfied by using a penalty method. The computer code is verified by showing that the computed pressure distributions for water slamming on rigid panels agree well with those reported in the literature. The pressure distributions computed for deformable panels are found to differ from those obtained by using a plate theory and Wagner's slamming impact theory. We have also delineated jet flows near the edges of the wetted hull, and studied delamination induced in a sandwich composite panel due to the hydroelastic pressure.  相似文献   

2.
This paper describes the development of a method for determining the fracture toughness of the core/faceplate bond in high-temperature sandwich plates. The tensile deformation behavior of a sandwich element was also determined. The results from the latter experiment were used in a beam on elastic foundation analysis of the fracture specimen. The faceplate/core toughness was determined at 23 and 180°C. The room temperature toughness was slightly higher and, in both cases, the toughness decreased with crack length. The higher toughness was associated with a greater degree of interlaminar failure in the faceplates, as opposed to core-pullout.  相似文献   

3.
The initial buckling load of curved panels under compressive loads is substantially reduced by the existence of imperfections, in particular geometric imperfections. It is therefore essential that these imperfections are considered in analysing components which incorporate such panels in order to accurately predict their buckling behaviour. Finite element analysis allows fully non-linear analysis of shells containing geometric imperfections, however, to obtain accurate results information is required on the exact size and shape of the imperfection to be modelled. In most cases this data is not available. It is therefore generally recommended that the imperfections are modelled on the first eigenmode and have an amplitude selected according to the manufacturing procedure. This paper presents the effects of varying imperfection shape and amplitude on the buckling and postbuckling behaviour of one specific case, a curved panel under combined shear and compression, to test the accuracy of such recommendations.  相似文献   

4.
This work examines the performance of composite panels when subjected to underwater impulsive loads. The scaled fluid-structure experimental methodology developed by Espinosa and co-workers was employed. Failure modes, damage mechanisms and their distributions were identified and quantified for composite monolithic and sandwich panels subjected to typical blast loadings. The temporal evolutions of panel deflection and center deflection histories were obtained from shadow Moiré fringes acquired in real time by means of high speed photography. A linear relationship of zero intercept between peak center deflections versus applied impulse per areal mass was obtained for composite monolithic panels. For composite sandwich panels, the relationship between maximum center deflection versus applied impulse per areal mass was found to be approximately bilinear but with a higher slope. Performance improvement of sandwich versus monolithic composite panels was, therefore, established specially at sufficiently high impulses per areal mass (I0/M¯>170 m s−1). Severe failure was observed in solid panels subjected to impulses per areal mass larger than 300 m s−1. Extensive fiber fracture occurred in the center of the panels, where cracks formed a cross pattern through the plate thickness and delamination was very extensive on the sample edges due to bending effects. Similar levels of damage were observed in sandwich panels but at much higher impulses per areal mass. The experimental work reported in this paper encompasses not only characterization of the dynamic performance of monolithic and sandwich panels but also post-mortem characterization by means of both non-destructive and microscopy techniques. The spatial distribution of delamination and matrix cracking were quantified, as a function of applied impulse, in both monolithic and sandwich panels. The extent of core crushing was also quantified in the case of sandwich panels. The quantified variables represent ideal metrics against which model predictive capabilities can be assessed.  相似文献   

5.
Usually when analyzing the mechanical response of foam-cored fiber-reinforced composite sandwich structures to localized static loading, the face sheets are treated as a linear-elastic material and no damage initiation and growth is considered. However, practice shows that at higher indentation magnitudes damage develops in the face sheet in the area of contact with the indentor, which could lead to local failure of the face laminate due to the loss of bending stiffness and strength. Therefore, the main objective of the present study is to develop a damage model for predicting the local failure in the composite face sheet and its influence on the load–displacement behavior of sandwich structures under local loading. For this purpose, the Hoffman failure criterion is incorporated into a finite element modeling procedure using the ABAQUS program system. Results deducted from the modeling procedure are compared with experimental data obtained in the case of static indentation tests performed on sandwich beam specimens using steel cylindrical indentors. It is shown that taking into account the damage in the face sheet leads to a substantial improvement in the performance of the model when simulating the mechanical behavior of the sandwich structures at higher indentation values.  相似文献   

6.
采用弹道冲击摆系统开展了爆炸载荷下分层梯度泡沫铝夹芯板的变形/失效模式和抗冲击性能实验研究,并配合激光位移传感器得到试件后面板中心点的挠度-时程响应曲线。研究了炸药当量和芯层组合方式对夹芯板试件变形/失效模式和抗冲击性能的影响。实验结果表明,泡沫铝夹芯板的变形/失效模式主要表现为面板的非弹性大变形,芯层压缩变形、芯层拉伸断裂以及芯层剪切失效。在研究爆炸冲量范围内,非梯度芯层夹芯板的抗冲击性能明显优越于所有分层梯度芯层夹芯板。对于分层梯度夹芯板试件,爆炸冲量较小时芯层组合形式对分层梯度芯层夹芯板的抗冲击性能的影响不大,而爆炸冲量较大时,最大相对密度芯层靠近前面板组合形式的分层梯度夹芯板试件抗冲击性能较好。研究结果可为泡沫金属夹芯结构的优化设计提供参考。  相似文献   

7.
应用一级轻气炮驱动泡沫铝弹丸高速撞击加载技术,对实心钢板以及前/后面板为Q235钢板、芯层分别为铝基复合泡沫和普通泡沫铝的夹层板结构,在脉冲载荷作用下的动态力学响应进行实验研究。结果表明:泡沫铝子弹高速撞击靶板可近似模拟爆炸载荷效果;铝基复合泡沫夹层板的变形分为芯层压缩和整体变形两个阶段;与其他靶板相比,铝基复合泡沫夹层板的抗冲击性能最优。基于实验研究,应用LS-DYNA非线性动力有限元软件,对泡沫铝夹层板的动态响应进行数值模拟。结果表明:泡沫铝子弹的长度和初始速度对子弹与夹层板之间的接触作用力影响显著,并且呈线性关系。泡沫芯层强度对等质量及等厚度夹层板的抗冲击性能均有显著影响,夹层板中心挠度对前、后面板的厚度匹配较为敏感,在临界范围内,若背板厚度大于面板厚度,可减小夹层板的最终挠度。夹层板面板宜采用刚度较低、延性好、拉伸破坏应变较大的金属材料。  相似文献   

8.
The aim of this study is to investigate the leaky and non-leaky behaviours of guided waves, between the composite skin and the core in CF/EP sandwich structures, focusing on the fundamental symmetric like and anti-symmetric like guided wave modes and Rayleigh waves. In investigating the core effect on the guided wave propagation different types of cores are used, namely Nomex honeycomb (HRH 10 1/8-3) 10 and 20 mm in thickness and foam (Divinycell®  PVC). The behaviour of the guided wave modes is characterised and the conversion mechanism to the Rayleigh wave is investigated. Further, leaky and non-leaky behaviours of guided waves upon interacting with debonded areas are explored, where the ability of guided waves to identify debonding of different sizes was assessed. Finite element analysis simulations are presented to support the experimental analysis, where propagation of ultrasonic waves and their interaction with debonded areas are quantitatively examined.  相似文献   

9.
Initially isotropic aggregates of crystalline grains show a texture-induced anisotropy of both their inelastic and elastic behavior when submitted to large inelastic deformations. The latter, however, is normally neglected, although experiments as well as numerical simulations clearly show a strong alteration of the elastic properties for certain materials. The main purpose of the work is to formulate a phenomenological model for the evolution of the elastic properties of cubic crystal aggregates. The effective elastic properties are determined by orientation averages of the local elasticity tensors. Arithmetic, geometric, and harmonic averages are compared. It can be shown that for cubic crystal aggregates all of these averages depend on the same irreducible fourth-order tensor, which represents the purely anisotropic portion of the effective elasticity tensor. Coupled equations for the flow rule and the evolution of the anisotropic part of the elasticity tensor are formulated. The flow rule is based on an anisotropic norm of the stress deviator defined by means of the elastic anisotropy. In the evolution equation for the anisotropic part of the elasticity tensor the direction of the rate of change depends only on the inelastic rate of deformation. The evolution equation is derived according to the theory of isotropic tensor functions. The transition from an elastically isotropic initial state to a (path-dependent) final anisotropic state is discussed for polycrystalline copper. The predictions of the model are compared with micro–macro simulations based on the Taylor–Lin model and experimental data.  相似文献   

10.
For the cases of using the finite curved beam elements and taking the effects of both the shear deformation and rotary inertias into consideration, the literature regarding either free or forced vibration analysis of the curved beams is rare. Thus, this paper tries to determine the dynamic responses of a circular curved Timoshenko beam due to a moving load using the curved beam elements. By taking account of the effect of shear deformation and that of rotary inertias due to bending and torsional vibrations, the stiffness matrix and the mass matrix of the curved beam element were obtained from the force–displacement relations and the kinetic energy equations, respectively. Since all the element property matrices for the curved beam element are derived based on the local polar coordinate system (rather than the local Cartesian one), their coefficients are invariant for any curved beam element with constant radius of curvature and subtended angle and one does not need to transform the property matrices of each curved beam element from the local coordinate system to the global one to achieve the overall property matrices for the entire curved beam structure before they are assembled. The availability of the presented approach has been verified by both the existing analytical solutions for the entire continuum curved beam and the numerical solutions for the entire discretized curved beam composed of the conventional straight beam elements based on either the consistent-mass model or the lumped-mass model. In addition to the typical circular curved beams, a hybrid curved beam composed of one curved-beam segment and two identical straight-beam segments subjected to a moving load was also studied. Influence on the dynamic responses of the curved beams of the slenderness ratio, moving-load speed, shear deformation and rotary inertias was investigated.  相似文献   

11.
Numerical noise has been a problem with finite element solutions to the shallow water equations. Two methods used to reduce the noise level are evaluated, and these results are compared with published results for equal-order interpolations. The two methods are mixed-interpolation (quadratic interpolation for velocity and linear interpolation for sea level) and a spectral form of the wave equation. Whereas mixed interpolation removes the troublesome sea level mode, it can still have considerable noise in velocity. The spectral wave equation is efficient and does not contain the spurious eigenmodes which contribute to high noise levels.  相似文献   

12.
Abstract

In the present study, the high-order free vibration analysis of rotating fully-bonded and delaminated sandwich beams; with and without vertical contact; containing AL-foam flexible core and carbon nanotubes reinforced composite (CNTRC) face sheets subjected to thermal and moisture field are investigated by using generalized differential quadrature method (GDQM). The compressible core and face sheets of sandwich beam, respectively, are composed of Aluminum alloy foam with variable mechanical properties in the thickness direction and CNTRC with temperature dependent material properties. In this study, the high-order sandwich panel theory (HSAPT) for AL-foam flexible core and Euler-Bernoulli beam theory for CNTRC face sheets are considered. By employing Hamilton’s principle, the governing partial differential equations of motion and associated boundary and continuity conditions for various types of regions (fully-bonded, delaminated with contact, delaminated without contact) are derived and then discretized by using GDQM. The final formulations lead to 14 partial differential equations for the entire structure including five equations for fully-bonded two-headed parts of AL-foam cored sandwich beam (AL-FCSB) and four equations for delaminated middle part of AL-FCSB beam which are combined in axial and transverse deformations. A parametric study is performed to investigate the influence of some important parameters such as existence of delaminated region, type of delaminated region (with or without contact), longitudinal position of delaminated region, slenderness ratio, face sheet thickness ratio, CNT volume fraction, temperature rise, moisture concentration, rotating speed, and hub radius. The obtained results reveal that the 1st frequency of delaminated AL-FCSB beam, whether with or without vertical contact, is less remarkably than ones of fully-bonded AL-FCSB beam which its value for the case of delaminated ‘with contact’ is larger than that of ‘without contact’. Moreover, the 1st frequency variation of the delaminated AL-FCSB beam is symmetrical with regard to the longitudinal position of the debonded region such that the 1st natural frequency declines with moving the debonded region toward the center of the beam. The study of vibration behavior of rotating sandwich beams is very important in design of rotating structural systems, specially damaged ones, such as airplanes, helicopter rotor blades, and robot arms. One of the most important types of damage encountered in mentioned cases is the decomposition of two layers or delamination. Working these rotating structures in the media, are always along with variations of temperature and humidity and hence their mechanical properties may be changed due to the environment conditions.

Communicated by S. Velinsky  相似文献   

13.
14.
In the present study an experimental investigation of heat transport and water infiltration in granular packed bed (unsaturated porous media) due to supplied water flux is carried out. The study is focus on the one-dimensional flow in a vertical granular packed bed column assuming local thermal equilibrium between water and particles at any specific space. This experimental study described the dynamics of heat transport and water infiltration in various testing condition. Experimentally, the influences of particle sizes, supplied water flux and supplied water temperature on heat transport and water infiltration during unsaturated flow are clarified in details. The results showed that the granular packed bed with larger particle size results in faster infiltration rate and form a wider infiltration depth. Furthermore, the increase of the supplied water flux and supplied water temperature corresponds to faster infiltration rate, but the results not linearly related to the interference between the heat transport and hydrodynamics characteristics in granular packed bed.  相似文献   

15.
An axisymmetric finite element is developed for the dynamic analysis of pipes subjected to water hammer. The analysis seamlessly captures the pipe response due to water hammer by solving first the water hammer mass and momentum conservation equations, to recover the spatial–temporal distribution of the internal pressure, and then uses the predicted pressure history to form a time-dependent energy equivalent load vector within a finite element model. The study then determines the pipe response by solving the finite element discretized equations of motion. The formulation of the pipe response is based on Hamilton’s principle in conjunction with a thin shell theory formulation, and captures inertial and damping effects. The results predicted by the model are shown to be in agreement with those based on an axisymmetric shell model in Abaqus for static, free vibration and transient responses for benchmark problems. The water hammer and structural models are seamlessly integrated to enable advancing the transient solution well into the time domain to capture the effect of reflected pressure wave due to water hammer. The results indicate that the radial stress/displacement oscillations approach those of the quasi-steady response when the valve closure time exceeds eight times the period of radial vibrations obtained for the case of instantaneous valve closure.  相似文献   

16.
An extension of the authors' previous methods is presented for the optimal control of flood propagation via a dam gate, based on a combination of the finite element and gradient methods. It is assumed in previous papers that the control duration is the same as the duration of the flood. However, the duration of the control does not necessarily coincide with that of the flood flow. To overcome this difficulty, the gradient method is applied to solve the free terminal time-fixed terminal condition problem. It is shown that the water elevation can be controlled exactly the same as with the previously presented method. It is also shown that the computation can be terminated at a far shorter time than the terminal time of the flood.  相似文献   

17.
This paper presents a computational model coupling heat, water and salt ion transport, salt crystallization, deformation and damage in porous materials. We focus on crystallization-induced damage. The theory of poromechanics is employed to relate stress, induced by crystallization processes or hygro-thermal origin, to the material's mechanical response. A non-local formulation is developed to describe the crystallization kinetics. The model performance is illustrated by simulating the damage caused by sodium chloride crystallization in a porous limestone. The results are compared with experimental observations based on neutron and X-ray imaging. The simulation results suggest that the crystallization kinetics in porous materials have to be accurately understood in order to be able to control salt damage. The results show that the effective stress caused by salt crystallization depends not only on the crystallization pressure but also on the amount of salt crystals, which is determined by the spreading of crystals in the porous material and the crystallization kinetics.  相似文献   

18.
In the present work the simulation of water impacts is discussed. The investigation is mainly focused on the energy dissipation involved in liquid impacts in both the frameworks of the weakly compressible and incompressible models. A detailed analysis is performed using a weakly compressible Smoothed Particle Hydrodynamics (SPH) solver and the results are compared with the solutions computed by an incompressible mesh-based Level-Set Finite Volume Method (LS-FVM). Impacts are numerically studied using single-phase models through prototypical problems in 1D and 2D frameworks. These problems were selected for the conclusions to be of interest for, e.g., the numerical computation of the flow around plunging breaking waves. The conclusions drawn are useful not only to SPH or LS-FVM users but also for other numerical models, for which accurate results on benchmark test-cases are provided.  相似文献   

19.
We describe a diffuse interface, or phase field model for simulating electromigration and stress-induced void evolution and growth in interconnect lines. Microstructural evolution is tracked by defining an order parameter, which takes on distinct uniform values within solid material and voids, and varying rapidly from one to the other over narrow interfacial layers associated with the void surfaces. The order parameter is governed by a form of the Cahn-Hilliard equation. An asymptotic analysis demonstrates that the zero contour of order parameter tracks the motion of a void evolving by coupled surface and lattice diffusion, driven by stress, electron wind and vacancy concentration gradients. Efficient finite element schemes are described to solve the modified Cahn-Hilliard equation, as well as the equations associated with the accompanying mechanical, electrical and bulk diffusion problems. The accuracy and convergence of the numerical scheme is investigated by comparing results to known analytical solutions. The method is applied to solve various problems involving void growth and evolution in representative interconnect geometries.  相似文献   

20.
This paper is concerned with the generation of water waves due to prescribed initial axisymmetric disturbances in a deep ocean with an ice-cover modelled as a thin elastic plate. The initial disturbances are either in the form of an impulsive pressure distributed over a certain region of the ice-cover or an initial displacement of the ice-cover. Assuming linear theory, the problem is formulated as an initial-value problem in the velocity potential describing the ensuing motion in the fluid. In the mathematical analysis, the Laplace and Hankel transform techniques have been utilised to obtain the deformation of the ice-covered surface as an infinite integral in each case. The method of stationary phase is used to evaluate the integral for large values of time and distance. Figures are drawn to show the effect of the presence of ice-cover on the wave motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号