首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensitive and specific high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay for the determination of rivastigmine and its major metabolite NAP 226-90 is presented. A 100 microL plasma aliquot was spiked with a structural analogue of rivastigmine as internal standard (PKF214-976-AE-1) and proteins were precipitated by adding 200 microL of methanol. After centrifugation a volume of 100 microL of the clear supernatant was mixed with 100 microL of methanol/water (30:70, v/v) and volumes of 25 microL were injected onto the HPLC system. Separation was acquired on a 150 x 2.0 mm i.d. Gemini C18 column using a gradient system with 10 mM ammonium hydroxide and methanol. Detection was performed by using a turboionspray interface and positive ion multiple reaction monitoring by tandem mass spectrometry. The assay quantifies rivastigmine from 0.25 to 50 ng/mL and its metabolite NAP 226-90 from 0.50 to 25 ng/mL, using human plasma samples of 100 microL. Validation results demonstrate that rivastigmine and metabolite concentrations can be accurately and precisely quantified in human EDTA plasma. This assay is now used to support clinical pharmacologic studies with rivastigmine.  相似文献   

2.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

3.
A sensitive, rapid and specific quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination of apomorphine (APO) in canine plasma. The analytes were prepared using one-step liquid-liquid extraction, and analyzed on a Waters Symmetry C(18) column interfaced with triple quadrupole tandem mass spectrometer. A mixture of methanol/0.1% formic acid in water (70: 30, v/v) was employed as the isocratic mobile phase. Positive electrospray ionization was utilized as the ionization source. The analyte and clenbuterol (internal standard) were both detected using multiple reaction monitoring (MRM) mode. The limit of detection (LOD) obtained was 0.03 ng/mL. The assay was linear over the concentration range of 0.1-100 ng/mL, and provided good precision (RSD) and good accuracy (RE). The analyte was stable by using antioxidants throughout the whole study. The experimental results show that LC/MS/MS is a rapid and sensitive method to analyze APO in plasma. Finally, the proposed method was successfully applied to a pharmacokinetic study of APO after intranasal administration of 0.5 mg apomorphine to 10 healthy beagle dogs.  相似文献   

4.
A number of anticancer drugs are cytidine analogues that undergo metabolic deactivation catalyzed by cytidine deaminase (CD). 3,4,5,6-Tetrahydrouridine (THU) is a potent inhibitor of CD, by acting as a transition-state analogue of its natural substrate cytidine. However, to date its pharmacokinetic properties have not been fully characterized, which has impaired its optimal preclinical evaluation and clinical use. We report a liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay for the sensitive, accurate and precise quantitation of THU in mouse plasma. Validation was performed according to FDA guidelines. The assay employed deuterated THU as the internal standard and an acetonitrile protein precipitation step. Separation, based on hydrophilic interaction chromatography, was achieved with an amino column and an isocratic mobile phase of 0.1% formic acid in acetonitrile and water followed by a wash. Chromatographic separation was followed by positive-mode electrospray ionization MS/MS detection in the multiple reaction monitoring (MRM) mode. The assay was accurate (92.5-109.9%) and precise (2.1-9.0%) in the concentration range of 0.2-50 microg/mL. Recovery from plasma was near-complete (92.9-119.3%) and ion suppression was negligible (-17.5 to -0.2%). Plasma freeze/thaw stability (93.1-102.1%), stability for 3 months at -80 degrees C (99.5-110.9%), and stability for 4 h at room temperature (92.1-102.4%) were all in order. This assay is currently being used to quantitate THU in ongoing pharmacokinetic studies. In addition, the assay is expected to be a useful tool in any future studies involving co-administration of THU with cytidine analogues.  相似文献   

5.
A sensitive and selective method for the determination of long-acting released octreotide in human plasma has been developed based on liquid chromatography/tandem mass spectrometry (LC/MS/MS). Octreotide and the internal standard, triptorelin, were precipitated from the matrix, washed with dichloromethane and subsequently separated by reversed-phase high-performance liquid chromatography (HPLC) employing a 1% formic acid/methanol gradient system. Detection was by electrospray ionization mass spectrometry in the positive ion mode using multiple-reaction monitoring. The assay was linear in the concentration range 0.0500-50.0 ng/mL with intra- and inter-day precision (as relative standard deviation) of <2.95% and <8.37%, respectively. The limit of detection was 0.0200 ng/mL. The method was applied to a pharmacokinetic study of long-acting released octreotide in healthy volunteers given an intramuscular injection containing 20 mg octreotide.  相似文献   

6.
A simple, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the determination of calceorioside B (CLB) in rat plasma. Detection was performed on a Thermo Scientific Hypersil Gold chromatography column using isocratic elution with a mobile phase of methanol–5 m m ammonium acetate–formic acid (70:30:0.1, v/v/v). Mass spectrometry was performed in selection reaction monitoring mode using a positive electrospray ionization interface. Good linearity was found for CLB in plasma in the linear range of 1.00–500 ng/mL (r > 0.9960). The validated method was successfully applied to the pharmacokinetic study of CLB in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A robust new analytical method has been developed for the determination of 5-fluorouracil (5-FU) in human plasma samples using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The method is based on a liquid-liquid extraction procedure, precolumn derivatization, reversed-phase HPLC separation, and detection using atmospheric pressure chemical ionization and selected reaction monitoring. The derivatization agent used was 4-bromomethyl-7-methoxycoumarin. The internal standard for the assay procedure was a stable isotope labeled analog of 5-FU. The lower limit of quantitation was 1. 0 ng/mL using 500 µ L aliquots of plasma. Sample throughput on the mass spectrometer was approximately 17 samples/h (3. 5 min/sample). The method was fully validated. The recovery of 5-FU averaged 76. 1%. The accuracy of the assay, assessed from quality control samples, ranged from 99. 1% to 104. 3% (% theoretical). The overall interassay precision (% RSD) was 2. 7%, and the intraassay precision (% RSD) ranged from 1.5% to 3. 9%. The derivatized samples were found to be stable under sample analysis conditions and during refrigerator storage. The method was specific for the determination of 5-FU.  相似文献   

8.
An assay based on protein precipitation and liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed and validated for the quantitative analysis of lisinopril in human plasma. After the addition of enalaprilat as internal standard (IS), plasma samples were prepared by one-step protein precipitation using perchloric acid followed by an isocratic elution with 10 mm ammonium acetate buffer (pH adjusted to 5.0 with acetic acid)-methanol (70:30, v/v) on a Phenomenex Luna 5 mu C(18) (2) column. Detection was performed on a triple-quadrupole mass spectrometer utilizing an electrospray ionization (ESI) interface operating in positive ion and selected reaction monitoring (SRM) mode with the precursor to product ion transitions m/z 406 --> 246 for lisinopril and m/z 349 --> 206 for enalaprilat. Calibration curves of lisinopril in human plasma were linear (r = 0.9973-0.9998) over the concentration range 2-200 ng/mL with acceptable accuracy and precision. The limit of detection and lower limit of quantification in human plasma were 1 and 2 ng/mL, respectively. The validated LC-MS/MS method has been successfully applied to a preliminary pharmacokinetic study of lisinopril in Chinese healthy male volunteers.  相似文献   

9.
A simple, sensitive and rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry (MS/MS) method was developed and validated for the assay of tizanidine in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by MS/MS in the selected reaction monitoring mode. The assay exhibited a linear dynamic range of 50-5000 pg/mL for tizanidine in human plasma. The lower limit of quantification was 50 pg/mL with a relative standard deviation of less than 13%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.5 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

10.
A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of lovastatin in human plasma. With simvastatin as internal standard, sample pretreatment involved one-step extraction with n-hexane-methylene dichloride-isopropanol (20:10:1, v/v/v) of 0.5 mL plasma. Chromatographic separation was carried out on an Acquity UPLC BEH C(18) column with mobile phase consisting of acetonitrile-water (containing 5 mmol/L ammonium acetate; 85:15, v/v) at a flow-rate of 0.35 mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) via electrospray ionization source with positive mode. The analysis time was shorter than 1.7 min per sample. The standard curve was linear (r2>or=0.99) over the concentration range 0.025-50.0 ng/mL with a lower limit of quantification of 0.025 ng/mL. The intra- and inter-day precision values were below 11% and the accuracy (relative error) was within 6.0% at three quality control levels. This is the first method of MS with MRM coupled to UPLC for the determination of lovastatin, which showed great advantages of high sensitivity, selectivity and high sample throughput. It was fully validated and successfully applied to the pharmacokinetic study of lovastatin tablets in healthy Chinese male volunteers after oral administration.  相似文献   

11.
A rapid, simple and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) was developed for the determination of an antiepileptic drug, lacosamide, in rat plasma. The method involves the addition of acetonitrile and internal standard solution to plasma samples, followed by centrifugation. An aliquot of the supernatant was diluted with water and directly injected into the LC/MS/MS system. The separations were performed on column packed with octadecylsilica (5 µm, 2.0 × 50 mm) with 0.1% formic acid and acetonitrile as mobile phase, and the detection was performed on tandem mass spectrometry by the multiple‐reaction monitoring via an electrospray ionization source. The standard curve was linear over the concentration range from 0.3 to 1000 ng/mL. The lower limit of quantification was 0.3 ng/mL using 50 μL of rat plasma sample. The intra‐ and inter‐assay precision and accuracy were found to be less than 11.7 and 8.8%, respectively. The developed analytical method was successfully applied to the pharmacokinetic study of lacosamide in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A high performance liquid chromatography/tandem mass spectrometry assay was first developed and validated for the quantification of methyl protodioscin (MPD), a natural furostanol saponin with distinct antitumor activity, in rat plasma with 17alpha-ethinylestradiol as internal standard (IS). Methanol-mediated protein precipitation was employed for plasma sample pretreatment. The separation was achieved on a C(18) column (150 x 4.6 mm, i.d., 5 microm) by isocratic elution with methanol-water (72:28, v/v) as mobile phase at a flow rate of 1.0 mL/min. Ion acquisition was performed in selective reaction monitoring positive mode by monitoring the transition of m/z 1085.7 --> 1053.7 for MPD, and in selective ion monitoring negative mode by monitoring the deprotonated ion m/z 295.5 for IS. The assay was linear over the concentration range of 2.024-270.0 microg/mL with 2.024 microg/mL as the lower limit of quantification. It was specific, accurate, precise and reproducible with intra- and inter-run RSD <8.3% and RE between -11.5 and 12.8%. The assay was successfully applied to a preclinical pharmacokinetic study after an intravenous dose of 40 mg/kg MPD to rats.  相似文献   

13.
A rapid and sensitive method for the determination of domperidone in plasma was developed, using high-performance liquid chromatographic separation with tandem mass spectrometry detection. The samples were rendered basic with 1 M Na2CO3 and the domperidone extracted using tert.-butyl methyl ether, followed by back-extraction into formic acid (2% in water). Chromatography was performed on a Phenomenex Luna C8 (2), 5 microm, 150x2 mm column with a mobile phase consisting of acetonitrile-0.02% formic acid (300:700, v/v), delivered at 0.2 ml/min. Detection was performed using an Applied Biosystems Sciex API 2000 mass spectrometer set at unit resolution in the multiple reaction monitoring mode. TurbolonSpray ionisation was used for ion production. The mean recovery of domperidone was +/- 100%, with a lower limit of quantification set at 0.189 ng/ml. This assay method makes use of the increased sensitivity and selectivity of tandem mass spectrometric detection resulting in a rapid (extraction and chromatography) and sensitive method for the determination of domperidone in human plasma, which is more sensitive than previously described methods.  相似文献   

14.
The interest in therapeutic drug monitoring has increased over the last few years. Inter‐ and intra‐patient variability in pharmacokinetics, plasma concentration related toxicity and success of therapy have stressed the need of frequent therapeutic drug monitoring of the drugs. A sensitive, selective and rapid liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) method was developed for the simultaneous quantification of acetylsalicylic acid (aspirin), salicylic acid, clopidogrel and carboxylic acid metabolite of clopidogrel in human plasma. The chromatographic separations were achieved on Waters Symmetry ShieldTM C18 column (150 × 4.6 mm, 5 µm) using 3.5 mm ammonium acetate (pH 3.5)–acetonitrile (10:90, v/v) as mobile phase at a flow rate of 0.75 mL/min. The present method was successfully applied for therapeutic drug monitoring of aspirin and clopidogrel in 67 patients with coronary artery disease. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
An ultra-sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the analysis of oral contraceptive ethinyl estradiol (EE) was developed and validated over the curve range of 2.5-500 pg/mL using 1 mL of human plasma sample. Ethinyl estradiol and the internal standard, ethinyl estradiol tetra-deuterated (EE-d4), were extracted from the plasma matrix with methyl t-butyl ether, derivatized with dansyl chloride and then back-extracted into hexane. The hexane phase was evaporated to dryness, reconstituted and injected onto the LC/MS/MS system. The chromatographic separation was achieved on a Luna C(18) column (50 x 2 mm, 5 micro m) with an isocratic mobile phase of 20:80 (v/v) water:acetonitrile with 1% formic acid. The offline derivatization procedure introduced the easily ionizable tertiary amine function group to EE. This greatly improved analyte sensitivity in electrospray ionization and enabled us to achieve the desired lower limit of quantitation at 2.5 pg/mL. This high sensitivity method can be used for therapeutic drug monitoring or supporting bio-equivalence and drug-drug interaction studies in human subjects.  相似文献   

16.
A highly sensitive, rapid assay method has been developed and validated for the estimation of abiraterone (ART) in rat and human plasma with liquid chromatography coupled to tandem mass spectrometry and electrospray ionization in the positive-ion mode. The assay procedure involves extraction of ART and phenacetin (internal standard, IS) from rat and human plasma with a simple protein precipitation extraction process. Chromatographic separation was achieved using an isocratic mobile (10 mm ammonium acetate:acetonitrile, 10:90, v/v) at a flow-rate of 0.70 mL/min on an Atlantis dC(18) column maintained at 40 °C with a total run time of 3.5 min. The MS/MS ion transitions monitored were 350.3 → 156.0 for ART and 180.2 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.20 ng/mL and the linearity range extended from 0.20 to 201 ng/mL. The intra- and inter-day precisions were in the ranges 2.39-10.4 and 4.84-9.53% in rat plasma and 3.82-10.8 and 6.97-8.94% in human plasma.  相似文献   

17.
This paper describes a sensitive and selective liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of the novel survivin suppressant YM155, 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium, which is developed for the treatment of solid tumors. This method uses a liquid-liquid extraction from 0.25 mL of dog plasma. LC separation was carried out on a Genesis Silica column (50 mm x 3.0 mm i.d.) at a flow-rate of 0.5 mL/min. Compounds were eluted using a mobile phase of 5 mm ammonium acetate and 0.1% formic acid in water-0.1% formic acid in acetonitrile, 17:83 (v/v). MS/MS detection was carried out with an MDS-Sciex API3000 triple quadrupole mass spectrometer in positive electrospray ionization mode. The standard curve was linear from 0.05 to 50 ng/mL (r > or = 0.9968). The lower limit of quantitation was 0.05 ng/mL. Good intra- and inter-day assay precision (within 7.4% RSD) and accuracy (within +/-12.3%) were obtained. The extraction recovery was 66.2%. The method was successfully applied to preclinical pharmacokinetic studies in dogs.  相似文献   

18.
Copen is a derivative obtained from the structural modification of osthole, which inhibits tumoral proliferation in many tumor cell lines. A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was established for the quantification of copen in rat plasma. After a simple sample preparation procedure by one‐step protein precipitation with methanol, copen and bicalutamide (internal standard, IS) were chromatographed on a Zorbax SB‐C18 (4.6×100 mm, 1.8 µm) column with a mobile phase consisting of methanol–5 mm ammonium formate water with 0.1% formic acid (80:20, v/v). MS detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive eletrospray ionization source. The assay was validated in the concentration range of 51.58–20630 ng/mL, with a limit of quantitation (LOQ) of 51.58 ng/mL. The intra‐ and inter‐day precisions (relative standard deviation) were ≤3.21 and ≤11.3%, respectively, with accuracy (%) in the range of 94.66–102.1%. The method was fully validated in a study of the pharmacokinetics of copen (25 mg/kg) after intragastric administration in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A sensitive and specific high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay for the quantitative determination of gemcitabine (dFdC) and its metabolite 2',2'-difluorodeoxyuridine (dFdU) is presented. A 200-microL aliquot of human plasma was spiked with a mixture of internal standards, didanosine, lamivudine and fludarabine, and extracted using solid-phase extraction. Dried extracts were reconstituted in 1 mM ammonium acetate/acetonitrile (97:3, v/v) and 10-microL volumes were injected onto the HPLC system. Separation was achieved on a 150 x 2.1 mm C18 bonded phase endcapped with polar groups (Synergi Hydro-RP column) using an eluent composed of 1 mM ammonium acetate (pH 6.8)/acetonitrile (94:6, v/v). Detection was performed by positive ion electrospray ionization followed by MS/MS. The assay quantifies a range from 0.5 to 1000 ng/mL for gemcitabine and from 5 to 10,000 ng/mL for dFdU using 200 microL of human plasma sample. Validation results demonstrate that gemcitabine and dFdU concentrations can be accurately and precisely quantified in human plasma. This assay is used to support clinical pharmacologic studies with gemcitabine.  相似文献   

20.
A sensitive, fast and specific method for the quantitation of pinocembrin in human plasma based on high‐performance liquid chromatography–tandem mass spectrometry (LC/MS/MS) was developed and validated. Clonazepam was used as the internal standard (IS). After solid‐phase extraction of 500 μL plasma, pinocembrin and the IS were separated on a Luna C8 column using the mobile phase composed of acetonitrile–0.3 mm ammonium acetate solution (65:35, v/v) at a flow rate of 0.25 mL/min in isocratic mode. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via an electrospray ionization source in negative mode by AB SCIEX Qtrap 5500. The assay was linear from 1 to 400 ng/mL, with within‐ and between‐run accuracy (relative error) from ?1.82 to 0.54%, and within‐ and between‐run precision (CV) below 5.25%. The recovery was above 88% for the analyte at 1, 50 and 300 ng/mL. This analytical method was successful for the determination of pinocembrin in human plasma and applied to a pharmacokinetic study of pinocembrin injection in healthy volunteers after intravenous drip administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号